

# MR15-Q80-IOLCJ-H1141 Radar-Scanner



# Inhaltsverzeichnis

| 1 | Uber dies           | e Anieitung                                              | 4    |
|---|---------------------|----------------------------------------------------------|------|
|   | 1.1                 | Zielgruppen                                              | 4    |
|   | 1.2                 | Symbolerläuterung                                        | 4    |
|   | 1.3                 | Weitere Unterlagen                                       | 4    |
|   | 1.4                 | Feedback zu dieser Anleitung                             | 4    |
| 2 | Hinweise            | zum Produkt                                              | 5    |
| - | 2.1                 | Produktidentifizierung                                   |      |
|   | 2.2                 | Lieferumfang                                             |      |
|   | 2.3                 | Turck-Service                                            |      |
| _ |                     |                                                          |      |
| 3 |                     | icherheit                                                |      |
|   | 3.1                 | Bestimmungsgemäße Verwendung                             |      |
|   | 3.2                 | Naheliegende Fehlanwendung                               |      |
|   | 3.3                 | Allgemeine Sicherheitshinweise                           | 6    |
| 4 | Produktb            | eschreibung                                              | 7    |
|   | 4.1                 | Geräteübersicht                                          | 7    |
|   | 4.1.1               | Anzeigeelemente                                          | 7    |
|   | 4.2                 | Eigenschaften und Merkmale                               | 7    |
|   | 4.3                 | Funktionsprinzip                                         | 8    |
|   | 4.4                 | Funktionen und Betriebsarten                             | 8    |
|   | 4.4.1               | Einstellmöglichkeiten                                    |      |
|   | 4.4.2               | Betriebsarten – Schaltausgänge                           |      |
|   | 4.4.3<br>4.4.4      | Ausgangsfunktionen – SchaltausgangIO-Link-Modus          |      |
|   | 4.4.4               | SIO-Modus (Standard-I/O-Modus)                           |      |
|   | 4.4.6               | Objekterfassung                                          |      |
|   | 4.4.7               | Kollisionsradien                                         |      |
|   | 4.4.8               | Signalfelder                                             |      |
|   | 4.4.9               | Geschwindigkeitserfassung                                | . 14 |
|   | 4.5                 | Technisches Zubehör                                      | . 15 |
| 5 | Montiere            | 1                                                        | . 16 |
| 6 |                     | en                                                       |      |
| U |                     | Anschlussbilder                                          |      |
|   |                     |                                                          |      |
| 7 |                     | nehmen                                                   |      |
|   | 7.1                 | In Betrieb nehmen mit IO-Link                            |      |
|   | 7.1.1               | IO-Link-Modus einrichten                                 |      |
|   | 7.1.2               | IO-Link-Prozessdaten                                     |      |
|   | 7.2                 | SIO-Modus einrichten                                     |      |
|   | <b>7.3</b><br>7.3.1 | In Betrieb nehmen mit SAE J1939                          |      |
|   | 7.3.1<br>7.3.2      | SAE J1939-Parameterdaten                                 |      |
| 0 |                     |                                                          |      |
| 8 |                     | und Parametrieren                                        |      |
|   | <b>8.1</b><br>8.1.1 | Einstellen und Visualisieren mit dem Turck Radar Monitor |      |
|   | 8.1.1               | IODD in TAS einlesen Turck Radar Monitor: Übersicht      |      |
|   | 8.1.3               | Sensor-Empfindlichkeit einstellen                        |      |
|   |                     | •                                                        |      |



|    | 8.1.4                                | Objektparameter setzen          | 35 |  |  |  |  |
|----|--------------------------------------|---------------------------------|----|--|--|--|--|
|    | 8.1.5                                | Signale filtern                 | 35 |  |  |  |  |
|    | 8.1.6                                | Kollisionsradien einstellen     | 37 |  |  |  |  |
|    | 8.1.7                                | Signalfelder konfigurieren      |    |  |  |  |  |
|    | 8.1.8                                | Signalstärkenanzeige einstellen |    |  |  |  |  |
|    | 8.1.9                                | Schaltausgang einstellen        | 40 |  |  |  |  |
| 9  | Betreiben                            |                                 | 44 |  |  |  |  |
|    | 9.1                                  | LED-Anzeigen                    | 44 |  |  |  |  |
|    | 9.2                                  | Kombinierte Zustandsanzeigen    | 44 |  |  |  |  |
| 10 | Störunger                            | n beseitigen                    | 45 |  |  |  |  |
| 11 | Instand ha                           | alten                           | 46 |  |  |  |  |
| 12 | Repariere                            | n                               | 46 |  |  |  |  |
|    | 12.1                                 | Geräte zurücksenden             | 46 |  |  |  |  |
|    |                                      | 1                               |    |  |  |  |  |
| 14 | Technische Daten                     |                                 |    |  |  |  |  |
| 15 | Turck-Niederlassungen – Kontaktdaten |                                 |    |  |  |  |  |
| 16 | Anhang: K                            | Conformität und Zulassungen     | 51 |  |  |  |  |
|    | 16.1                                 | EU-Konformitätserklärung        | 51 |  |  |  |  |
|    | 16.2                                 | FCC digital device limitations  | 51 |  |  |  |  |



# Über diese Anleitung

Die Anleitung beschreibt den Aufbau, die Funktionen und den Einsatz des Produkts und hilft Ihnen, das Produkt bestimmungsgemäß zu betreiben. Lesen Sie die Anleitung vor dem Gebrauch des Produkts aufmerksam durch. So vermeiden Sie mögliche Personen-, Sach- und Geräteschäden. Bewahren Sie die Anleitung auf, solange das Produkt genutzt wird. Falls Sie das Produkt weitergeben, geben Sie auch diese Anleitung mit.

## 1.1 Zielgruppen

Die vorliegende Anleitung richtet sich an fachlich geschultes Personal und muss von jeder Person sorgfältig gelesen werden, die das Gerät montiert, in Betrieb nimmt, betreibt, instand hält, demontiert oder entsorgt.

## 1.2 Symbolerläuterung

In dieser Anleitung werden folgende Symbole verwendet:



#### **GEFAHR**

GEFAHR kennzeichnet eine gefährliche Situation mit hohem Risiko, die zum Tod oder zu schweren Verletzungen führt, wenn sie nicht vermieden wird.



#### WARNIING

WARNUNG kennzeichnet eine gefährliche Situation mit mittlerem Risiko, die zum Tod oder zu schweren Verletzungen führen kann, wenn sie nicht vermieden wird.



#### VORSICHT

VORSICHT kennzeichnet eine gefährliche Situation mit mittlerem Risiko, die zu mittelschweren oder leichten Verletzungen führen kann, wenn sie nicht vermieden wird.



#### **ACHTUNG**

ACHTUNG kennzeichnet eine Situation, die zu Sachschäden führen kann, wenn sie nicht vermieden wird.



#### HINWEIS

Unter HINWEIS finden Sie Tipps, Empfehlungen und nützliche Informationen zu speziellen Handlungsschritten und Sachverhalten. Die Hinweise erleichtern Ihnen die Arbeit und helfen Ihnen, Mehrarbeit zu vermeiden.

#### HANDLUNGSAUFFORDERUNG

Dieses Zeichen kennzeichnet Handlungsschritte, die der Anwender ausführen muss.

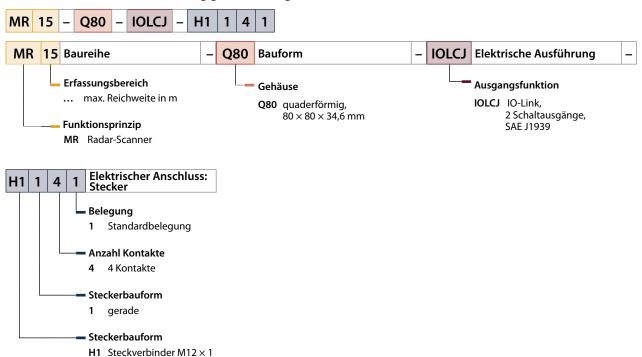
Dieses Zeichen kennzeichnet relevante Handlungsresultate.

#### 1.3 Weitere Unterlagen

Ergänzend zu diesem Dokument finden Sie im Internet unter www.turck.com folgende Unterlagen:

- Datenblatt
- Konformitätserklärungen
- Kurzbetriebsanleitung
- Inbetriebnahmehandbuch IO-Link-Devices

#### 1.4 Feedback zu dieser Anleitung


Wir sind bestrebt, diese Anleitung ständig so informativ und übersichtlich wie möglich zu gestalten. Haben Sie Anregungen für eine bessere Gestaltung oder fehlen Ihnen Angaben in der Anleitung, schicken Sie Ihre Vorschläge an techdoc@turck.com.



# 2 Hinweise zum Produkt

## 2.1 Produktidentifizierung

Diese Anleitung gilt für die folgenden Radar-Scanner:



# 2.2 Lieferumfang

Im Lieferumfang sind enthalten:

- Radar-Scanner
- Kurzbetriebsanleitung

## 2.3 Turck-Service

Turck unterstützt Sie bei Ihren Projekten von der ersten Analyse bis zur Inbetriebnahme Ihrer Applikation. In der Turck-Produktdatenbank unter www.turck.com finden Sie Software-Tools für Programmierung, Konfiguration oder Inbetriebnahme, Datenblätter und CAD-Dateien in vielen Exportformaten.

Die Kontaktdaten der Turck-Niederlassungen weltweit finden Sie auf S. [ > 49].



# 3 Zu Ihrer Sicherheit

Das Produkt ist nach dem Stand der Technik konzipiert. Dennoch gibt es Restgefahren. Um Personen- und Sachschäden zu vermeiden, müssen Sie die Sicherheits- und Warnhinweise beachten. Für Schäden durch Nichtbeachtung von Sicherheits- und Warnhinweisen übernimmt Turck keine Haftung.

## 3.1 Bestimmungsgemäße Verwendung

Die Radar-Scanner der Baureihe MR... erfassen berührungslos die Anwesenheit von Objekten im Erfassungsbereich und messen deren Position im Raum. Wenn sich mehrere Objekte im Erfassungsbereich befinden, kann gewählt werden, ob das Objekt ausgewertet werden soll, das sich am nächsten zum Sensor befindet, oder jenes mit dem stärksten Echosignal. Erfassungsbereich und Objekterfassung können über Filtereinstellungen und Sensorkonfigurationen angepasst werden. Die Geräte dürfen nur wie in dieser Anleitung beschrieben verwendet werden. Jede andere Verwendung gilt als nicht bestimmungsgemäß. Für daraus resultierende Schäden übernimmt Turck keine Haftung.

Das Gerät darf nur wie in dieser Anleitung beschrieben verwendet werden. Jede andere Verwendung gilt als nicht bestimmungsgemäß. Für daraus resultierende Schäden übernimmt Turck keine Haftung.

# 3.2 Naheliegende Fehlanwendung

■ Die Geräte sind keine Sicherheitsbauteile und dürfen nicht zum Personenschutz eingesetzt werden.

# 3.3 Allgemeine Sicherheitshinweise

- Das Gerät erfüllt die EMV-Anforderungen für den industriellen Bereich. Bei Einsatz in Wohnbereichen Maßnahmen treffen, um Funkstörungen zu vermeiden.
- Nur fachlich geschultes Personal darf das Gerät montieren, installieren, betreiben, parametrieren und instand halten.
- Das Gerät nur in Übereinstimmung mit den geltenden nationalen und internationalen Bestimmungen, Normen und Gesetzen einsetzen.
- Die maximal emittierte Sendeleistung des Sensors übersteigt nicht die zugelassenen Grenzwerte nach ETSI EN 305550 und FCC/CFR. 47 Part 15.
- Das Gerät ausschließlich innerhalb der technischen Spezifikationen betreiben.
- Ein längerer Aufenthalt im Strahlungsbereich des Geräts kann gesundheitsschädlich sein. Mindestabstand von 20 cm zur aktiv ausstrahlenden Fläche des Radarsensors einhalten.



# 4 Produktbeschreibung

Die Radar-Scanner der Baureihe MR... sind in einem Aluminium-Druckgussgehäuse in Schutzart IP67/IP68/IP69K ausgeführt und verfügen über eine Schockresistenz von 100 g. Die aktive Fläche besteht aus Kunststoff. Zum Anschluss der Sensorleitung besitzen die Geräte einen 4-poligen M12-Steckverbinder für die IO-Link-Kommunikation und die Übertragung der frei einstellbaren Schaltinformationen. Ein 5-poliger M12-Steckverbinder dient zum Anschluss der SAE J1939-Schnittstelle.

#### 4.1 Geräteübersicht

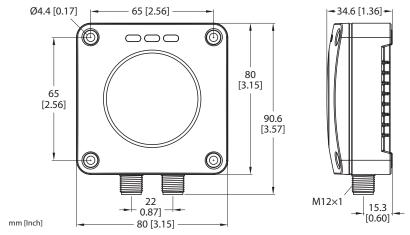



Abb. 1: Abmessungen

#### 4.1.1 Anzeigeelemente

Der Radar-Scanner verfügt über drei LEDs zur Anzeige von Betriebsspannung und Gerätestatus [> 44].

# 4.2 Eigenschaften und Merkmale

- Reichweite: 15 m
- Blindzone: 35 cm
- Auflösung: 1 mm
- Öffnungswinkel: einstellbar, max. 120°
- Zugelassen nach ETSI 305550-2
- Zugelassen nach FCC/CFR. 47 Part 15
- $2 \times M12 \times 1$ ,  $1 \times 4$ -polig,  $1 \times 5$ -polig
- Betriebsspannung 9...33 VDC
- Schaltausgang umschaltbar PNP/NPN
- IO-Link, SSP 4
- SAE J1939
- Quaderförmig, 80 × 80 mm



## 4.3 Funktionsprinzip

Das FMCW-Radar (frequenzmoduliertes Dauerstrichradar, Frequency Modulated Continuous Wave) erfasst die Entfernung zu unbewegten Objekten.

Der Sensor sendet ein Radarsignal aus, das in der Frequenz variiert. Die Änderungsrate der Frequenz ist dabei konstant. Objekte im Erfassungsbereich reflektieren das ausgesendete Signal. Über die Laufzeitverschiebung und die abweichende Frequenz beim reflektierten Signal kann die Entfernung zum Objekt bestimmt werden.

Ein MIMO (Multiple Input Multiple Output)-Radarsystem besteht aus mehreren Empfangs- und Sendeantennen. Durch den lateralen Versatz der Antennen kann zusätzlich die genaue Lage im Raum bestimmt werden.

#### 4.4 Funktionen und Betriebsarten

Das Gerät misst die Distanz zwischen dem Erfassungsobjekt und dem Ende des Sensorgehäuses, die jeweiligen Azimut- und Elevationswinkel, sowie die Radialgeschwindigkeit. Für die Schaltausgänge lassen sich ein Einzelschaltpunkt, zwei Schaltpunkte oder eine Fensterfunktion festlegen, sowohl für die Abstands-, Winkel- oder Geschwindigkeitskanäle. Zusätzlich werden die Messwerte über die IO-Link-Prozessdaten und über das SAE J1939-Protokoll an die übergeordnete Steuerungsebene gesendet. Der Abstandswert wird in m, der Winkel in ° und die Geschwindigkeit in m/s über die Prozessdaten übertragen.

Das Gerät ist über IO-Link und über das SAE J1939-Protokoll parametrierbar.

#### 4.4.1 Einstellmöglichkeiten

Die Geräte verfügen über drei Einstellmöglichkeiten:

- Einstellung über IO-Link
- Einstellung über SAE J1939 Proprietary A PGN 0xEFxx
- Einstellung über den Turck Radar Monitor via TAS

#### 4.4.2 Betriebsarten – Schaltausgänge

Die Schaltausgänge können über IO-Link oder über TAS eingestellt werden. Die Schaltausgänge sind unabhängig voneinander konfigurierbar und auswertbar. Einem Schaltausgang kann ein Wert aus den Prozessdaten zugeordnet werden. Abhängig vom Prozesswert gibt der Ausgang ein Schaltsignal aus.

Die Schaltausgänge können entweder als reine Schaltausgänge gemäß Smart Sensor Profile oder zur Kollisionserkennung genutzt werden. Auch Kombinationen aus einem Schaltausgang gemäß Smart Sensor Profile und einem Ausgang zur Kollisionserkennung sind möglich.

Bei der Kollisionserkennung schaltet der Sensor, wenn sich ein Objekt in einem definierten Signalfeld oder innerhalb eines festgelegten Radius befindet.

Die Schaltpunkte für die reinen Schaltausgänge können über einen festgelegten Prozesswert für Azimutwinkel, Elevationswinkel, Distanz oder Geschwindigkeit festgelegt werden. Das Ausgangsverhalten ist auf S. [ > 9] beschrieben.



#### 4.4.3 Ausgangsfunktionen – Schaltausgang

Die Schaltlogik kann über IO-Link invertiert werden. Die folgenden Beispiele gelten für die Schaltlogik **HIGH**  $(0 \rightarrow 1)$ .

#### Single Point Mode (Einpunkt-Modus)

Im Single Point Mode wird das Schaltverhalten über einen Grenzwert SP1 und eine Hysterese definiert. Am Grenzwert SP1 ändert der Ausgang seinen Schaltzustand. Die Hysterese kann über IO-Link eingestellt werden und muss innerhalb des Erfassungsbereichs liegen.

Wenn sich ein Objekt vom Sensor entfernt, ist der Schaltausgang aktiv, solange sich das Objekt zwischen dem Anfang des Erfassungsbereichs und dem Grenzwert SP1 zuzüglich der eingestellten Hysterese (SP1+Hyst) befindet. Passiert das Objekt den Grenzwert (SP1+Hyst), wird der Schaltausgang inaktiv.

Wenn sich ein Objekt auf den Sensor zu bewegt, ist der Schaltausgang inaktiv, solange sich das Objekt zwischen dem Ende des Erfassungsbereichs und dem Grenzwert SP1 befindet. Passiert das Objekt den Grenzwert SP1, wird der Schaltausgang aktiv.

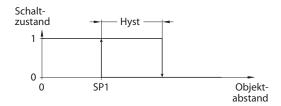



Abb. 2: Single Point Mode

#### Two Point Mode (Zweipunkt-Modus)

Im Two Point Mode wird das Schaltverhalten über einen Ausschaltpunkt SP1 und einen Einschaltpunkt SP2 definiert. Der Modus lässt sich auch als frei einstellbare Hysterese nutzen.

Wenn sich ein Objekt vom Sensor entfernt, ist der Schaltausgang aktiv, solange sich das Objekt zwischen dem Anfang des Erfassungsbereichs und dem Ausschaltpunkt SP1 befindet. Passiert das Objekt den Ausschaltpunkt SP1, wird der Schaltausgang inaktiv.

Wenn sich ein Objekt auf den Sensor zu bewegt, ist der Schaltausgang inaktiv, solange sich das Objekt zwischen dem Ende des Erfassungsbereichs und dem Einschaltpunkt SP2 befindet. Passiert das Objekt den Einschaltpunkt SP2, wird der Schaltausgang aktiv.

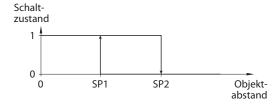



Abb. 3: Two Point Mode



#### Window Mode (Fenstermodus)

Im Window Mode werden für den Schaltausgang eine obere und untere Fenstergrenze gesetzt. Für die Fenstergrenzen SP1 und SP2 lässt sich eine Hysterese einstellen. Das Schaltfenster muss innerhalb des Erfassungsbereichs liegen. Die Hysterese kann über IO-Link eingestellt werden und muss innerhalb des Erfassungsbereichs liegen.

Wenn der Prozesswert steigt, ist der Schaltausgang inaktiv, solange sich der Prozesswert zwischen dem Anfang des Erfassungsbereichs und der Fenstergrenze SP2 befindet. Der Schaltausgang bleibt aktiv, bis der Prozesswert über die Fenstergrenze SP1 zzgl. der Hysterese (SP1+Hyst) steigt. Wenn der Prozesswert über (SP1+Hyst) steigt, wird der Schaltausgang wieder inaktiv.

Wenn der Prozesswert sinkt, ist der Schaltausgang inaktiv, solange sich der Prozesswert zwischen dem Ende des Erfassungsbereichs und der Fenstergrenze SP1 befindet. Der Schaltausgang bleibt aktiv, bis der Prozesswert unter die Fenstergrenze SP2 abzüglich der Hysterese (SP2-Hyst) sinkt. Wenn der Prozesswert unter (SP2-Hyst) sinkt, wird der Schaltausgang wieder inaktiv.

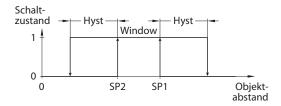



Abb. 4: Window Mode

#### 4.4.4 IO-Link-Modus

Für den Betrieb im IO-Link-Modus muss das IO-Link-Gerät an einen IO-Link-Master angeschlossen werden. Wenn der Port im IO-Link-Modus konfiguriert ist, findet eine bidirektionale IO-Link-Kommunikation zwischen dem IO-Link-Master und dem Gerät statt. Dazu wird das Gerät über einen IO-Link-Master in die Steuerungsebene integriert. Zuerst werden die Kommunikationsparameter (communication parameter) ausgetauscht, anschließend beginnt der zyklische Datenaustausch der Prozessdaten (Process Data Objects).

#### 4.4.5 SIO-Modus (Standard-I/O-Modus)



#### **HINWEIS**

Der SIO-Modus ist nur an Stecker 1 verfügbar (Schaltausgang 1: Pin 4, Schaltausgang 2: Pin 2).

Im Standard-I/O-Modus findet keine IO-Link-Kommunikation zwischen dem Gerät und dem Master statt. Das Gerät übermittelt lediglich den Schaltzustand seiner binären Ausgänge und kann auch über ein Feldbusgerät oder eine Steuerung mit digitalen PNP- oder NPN-Eingängen betrieben werden. Ein IO-Link-Master ist für den Betrieb nicht erforderlich.

Das Gerät kann über IO-Link parametriert und anschließend mit den entsprechenden Einstellungen im SIO-Modus an digitalen Eingängen betrieben werden. Im SIO-Modus können nicht alle Funktionen und Eigenschaften des Geräts genutzt werden.

Die Ausgänge lassen sich im SIO-Modus mit jeweils einem Schaltsignal belegen. Die folgenden Schaltsignale sind möglich:

- Schaltsignale aus den Objekt-Prozessdaten: ein bestimmter Abstands-, Winkel- oder Geschwindigkeitswert
- Schaltsignale aus den Kollisions-Prozessdaten: Radius 1...6 oder Signalfeld 1...3



#### 4.4.6 Objekterfassung

Der Radar-Scanner erfasst Objekte als einzelne Datenpunkte. Die Datenpunkte sind definiert durch einen Abstandswert zum Sensor, einen Wert für den Elevationswinkel und einen Wert für den Azimut-Winkel. Die erkannten Objekte werden vom Sensor intern aus den Datenpunkten berechnet. Zusätzlich gibt der Sensor zu allen Größen einen Delta-Wert aus. Die Delta-Werte zeigen die Objekt-Umrisse.

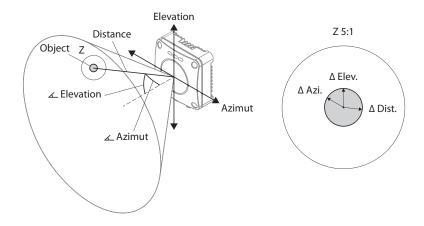



Abb. 5: Objekterfassung

## Objektgröße

Über IO-Link oder TAS kann die erwartete Größe der Objekte eingestellt werden.

Für die Berechnung der Objektgröße wird um jeden erfassten Datenpunkt ein Radius gezogen. Die Größe des Radius ist einstellbar. Wenn sich mehrere Radien schneiden, werden die darin enthaltenen Datenpunkte zu Objekten zusammengefasst. Je größer der Radius gewählt wird, desto mehr Datenpunkte werden zu einem Objekt zusammengefasst.

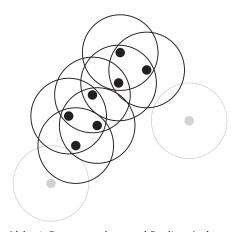



Abb. 6: Datenpunkte und Radien (schematische Darstellung)



#### Radarbelichtungszeit

Bei der Objekterfassung erzeugt der Sensor intern Bilder, die übereinandergelegt werden. Je mehr Bilder übereinandergelegt werden, desto eher erkennt der Sensor auch schwach reflektierende Objekte. Die Anzahl der Bilder lässt sich über IO-Link oder den Radar-Monitor in TAS einstellen (siehe Parameter Radarbelichtungszeit im Kapitel Einstellen, [ > 35]). Die Aktualisierung der Bilder erfolgt wie in einem Ringspeicher: In der Default-Einstellung legt der Sensor bei der Objekterfassung drei Bilder übereinander. Wenn im ersten Bild ein Objekt erkannt wird, das zum Zeitpunkt des zweiten Bilds nicht mehr physikalisch im Erfassungsbereich vorhanden ist, wird das Objekt erst ab dem vierten Bild nicht mehr vom Sensor ausgegeben.

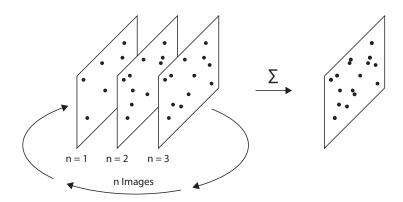



Abb. 7: Prinzip der Radarbelichtungszeit

Je größer die Radarbelichtungszeit gewählt wird, desto höher ist die Update-Zeit:

| Radarbelichtungszeit | Update-Zeit pro Bild | Update-Zeit gesamt |
|----------------------|----------------------|--------------------|
| 2                    | 50 ms                | 100 ms             |
| 3                    | 50 ms                | 150 ms             |
| 4                    | 100 ms               | 400 ms             |
| 5                    | 100 ms               | 500 ms             |



#### 4.4.7 Kollisionsradien

Über IO-Link und TAS lassen sich bis zu sechs Kollisionsradien unabhängig voneinander festlegen. Wenn in einem Radius ein Objekt erfasst wird, gibt der Sensor ein Signal aus. Je nach Parametrierung kann das Signal als Schaltsignal an einem der Ausgänge oder über die Prozessdaten ausgegeben werden.

Ein Kollisionsradius muss über den Abstand zum Sensor definiert werden.

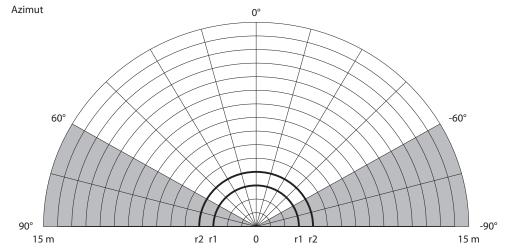



Abb. 8: Beispiel für Kollisionsradien

#### 4.4.8 Signalfelder

Über IO-Link und TAS lassen sich bis zu drei applikationsspezifische Signalfelder unabhängig voneinander einstellen. Auch ein Überlappen der Signalfelder ist möglich. Wenn in einem Signalfeld ein Objekt erfasst wird, gibt der Sensor ein Signal aus. Je nach Parametrierung kann das Signal als Schaltsignal an einem der Ausgänge oder über die Prozessdaten ausgegeben werden.

Ein Signalfeld muss über Distanz zum Sensor, Azimutwinkel und Elevationswinkel definiert werden. Wenn sich ein Objekt zwischen dem Sensor und einem Signalfeld befindet, wird über die Prozessdaten eine Verschattung des Signalfelds signalisiert. Optional lässt sich über die Objektparameter ein Sicherheitsabstand rund um die erfassten Objekte von bis zu 500 mm einstellen.

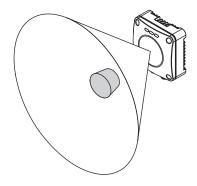



Abb. 9: Signalfeld (schematische Darstellung)

Bei der Kollisionserkennung schaltet der Sensor, wenn sich ein Objekt in einem definierten Signalfeld oder innerhalb eines festgelegten Radius befindet.



# 4.4.9 Geschwindigkeitserfassung

Das Gerät erfasst die Radialgeschwindigkeit eines Objekts im Erfassungsbereich. Die Radialgeschwindigkeit ist der Anteil eines Geschwindigkeitsvektors, mit der sich ein Objekt zum Sensor hin- oder vom Sensor wegbewegt. Die Geschwindigkeit, mit der sich ein Objekt nach rechts oder links im Raum bewegt, kann nicht erfasst werden.



# 4.5 Technisches Zubehör

| Abbildung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Тур                       | Beschreibung                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 28 24 32 12 12 12 12 12 12 12 12 12 12 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TBEN-S2-4IOL              | Kompaktes Multiprotokoll-I/O-Modul für<br>Ethernet, 4 IO-Link-Master-Kanäle, 4 univer-<br>selle digitale PNP-Kanäle, 0,5 A, Kanal-<br>diagnose    |
| LED: USB-Mini CH1 (C/Q) LED: PWR CH2 (DI/DO) IN-DC Error  1 24 1 M12 x 1 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | USB-2-IOL-0002            | IO-Link-Adapter V1.1 mit integrierter USB-<br>Schnittstelle                                                                                       |
| 015<br>M121<br>D14<br>D14<br>M12x1<br>D15<br>M12x1<br>D15<br>M12x1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WKC4.4T-2-<br>RSC4.4T/TXL | Verbindungsleitung, M12-Kupplung, abgewinkelt auf M12-Stecker, gerade, 4-polig, Leitungslänge: 2 m, Mantelmaterial: PUR, schwarz; cULus-Zulassung |
| -0 15<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WKC4.4T-2/TXL             | Verbindungsleitung, M12-Kupplung, abgewinkelt, 4-polig, Leitungslänge: 2 m, Mantelmaterial: PUR, schwarz; cULus-Zulassung                         |
| 15 [0.59] 6.5 (0.26] (0.26] (0.26] (0.26] (0.26] (0.26] (0.279) (0.26) (0.279) (0.26) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) (0.279) | RR-6                      | Radar-Reflektor aus Edelstahl, Kathetenlänge 60 mm, RadarCrossSection: 10 m² (vgl. PKW)                                                           |
| 15 [0.59]  17 [17 [0.59]  18.5 [0.33]  17 [0.70]  18.5 [0.33]  10.41  10.59]  11 [0.59]  11 [0.59]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RR-12                     | Radar-Reflektor aus Edelstahl, Kathetenlänge 120 mm, RadarCrossSection: 250 m² (vgl. LKW)                                                         |
| 15 (0.58)  284.3  (11.19)  8.5 (0.33)  (0.43)  (0.42)  (0.49)  (0.59)  (0.59)  (0.59)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RR-20                     | Radar-Reflektor aus Edelstahl, Kathetenlänge 200 mm, RadarCrossSection: 1115 m <sup>2</sup> (vgl. Schiff)                                         |

Neben den aufgeführten Anschlussleitungen bietet Turck auch weitere Ausführungen für spezielle Anwendungen mit passenden Anschlüssen für das Gerät. Mehr Informationen dazu finden Sie in der Turck-Produktdatenbank unter <a href="https://www.turck.de/produkte">https://www.turck.de/produkte</a> im Bereich Anschlusstechnik.



# 5 Montieren

Bei der Montage muss die Linsenwölbung nicht berücksichtigt werden. Durch den Schriftzug "Turck" wird die Azimutachse des Sensors gekennzeichnet.

Je nach Anwendungsfall dürfen die Sensoren in beliebiger Ausrichtung montiert werden. Die Radarwelle breitet sich senkrecht zur Radarlinsenfläche aus. Der Erfassungsbereich kann in Abstand und Winkel kundenspezifisch eingestellt werden. Dabei ist der maximale Öffnungswinkel auf  $\pm 60^{\circ}$  (Azimut) und  $\pm 50^{\circ}$  (Elevation) beschränkt.

Das maximale Anziehdrehmoment bei der Befestigung des Sensors beträgt 7 Nm.

- ► Sensor am vorgesehenen Einsatzort montieren. Die Blindzone s<sub>min</sub> beachten, in der keine Objekterfassung stattfindet (siehe technische Daten, [▶ 47]).
- Sensor so montieren, dass keine Fremdobjekte im Erfassungsbereich liegen.

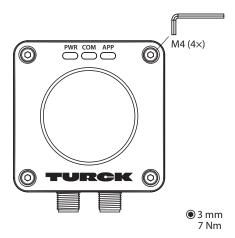



Abb. 10: Radar-Scanner montieren



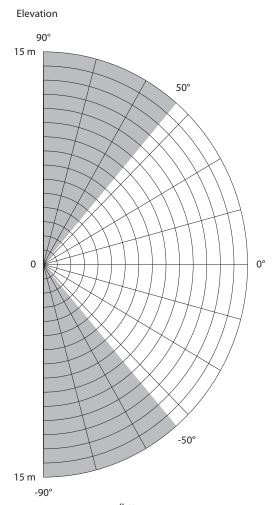



Abb. 11: Maximaler Öffnungswinkel (Elevation)

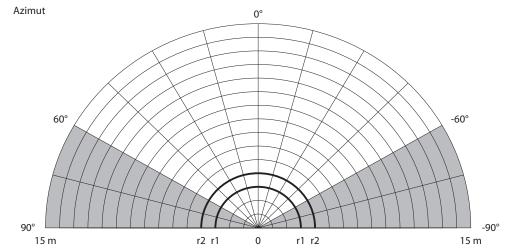



Abb. 12: Maximaler Öffnungswinkel (Azimut)



# 6 Anschließen



#### **HINWEIS**

Das Gerät muss aus SELV/PELV versorgt werden, das die Anforderungen an einen Stromkreis mit begrenzter Energie gemäß UL61010-1 3rd Edition (IEC/EN 61010-1) erfüllt

- ▶ Kupplung der Anschlussleitung an den Stecker des Sensors anschließen.
- ▶ Offenes Ende der Anschlussleitung an die Stromquelle und/oder Auswertegeräte anschließen.

## 6.1 Anschlussbilder



Abb. 13: Position der Steckverbinder



Abb. 14: Pinbelegung Stecker 1 (IO-Link und Schaltausgänge)

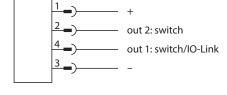



Abb. 15: Anschlussbild Stecker 1 (IO-Link und Schaltausgänge)



Abb. 16: Pinbelegung Stecker 2 (SAE J1939)

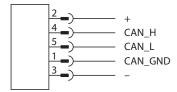



Abb. 17: Anschlussbild Stecker 2 (SAE J1939)



# 7 In Betrieb nehmen

Nach Anschluss und Einschalten der Spannungsversorgung ist das Gerät automatisch betriebsbereit.

#### 7.1 In Betrieb nehmen mit IO-Link



#### **HINWEIS**

Im IO-Link-Betrieb beträgt der Spannungsbereich 18...30 VDC.

Turck empfiehlt zur Unterstützung der Inbetriebnahme mit IO-Link die Turck Automation Suite (TAS). Mit TAS lassen sich alle Parameter und die Prozessdaten anzeigen. Zusätzlich steht in TAS zur Visualisierung der Turck Radar Monitor zur Verfügung.

#### 7.1.1 IO-Link-Modus einrichten

- ▶ Zykluszeit von min. 2,3 ms am IO-Link-Master einstellen.
- ⇒ Das Gerät ist betriebsbereit. Die Prozessdaten können nach einer Bereitschaftsverzögerung von 450 ms an den IO-Link-Master gesendet werden.

#### 7.1.2 IO-Link-Prozessdaten

## Prozess-Eingangdaten

| Byte-Nr. | Bit                                                        |                       |                       |                       |                       |                       |                           |                           |  |  |
|----------|------------------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------------------|---------------------------|--|--|
|          | 7                                                          | 6                     | 5                     | 4                     | 3                     | 2                     | 1                         | 0                         |  |  |
| 0        |                                                            | keine Mess-<br>daten  |                       |                       |                       |                       | Schaltsignal<br>Kanal 4.2 | Schaltsignal<br>Kanal 4.1 |  |  |
| 1        | Skalierung C                                               | Geschwindigk          | eit                   |                       |                       |                       |                           |                           |  |  |
| 2        | Geschwindi                                                 | gkeit                 |                       |                       |                       |                       |                           |                           |  |  |
| 3        |                                                            |                       |                       |                       |                       |                       |                           |                           |  |  |
| 4        | Signalfeld 3<br>Bit 2                                      | Signalfeld 3<br>Bit 1 | Signalfeld 2<br>Bit 2 | Signalfeld 2<br>Bit 1 | Signalfeld 1<br>Bit 2 | Signalfeld 1<br>Bit 1 | Schaltsignal<br>Kanal 3.2 | Schaltsignal<br>Kanal 3.1 |  |  |
| 5        | Skalierung E                                               | levationswin          | kel                   |                       |                       |                       |                           |                           |  |  |
| 6        | Elevationsw                                                | inkel                 |                       |                       |                       |                       |                           |                           |  |  |
| 7        |                                                            |                       |                       |                       |                       |                       |                           |                           |  |  |
| 8        | Radius 6                                                   | Radius 5              | Radius 4              | Radius 3              | Radius 2              | Radius 1              | Schaltsignal<br>Kanal 2.2 | Schaltsignal<br>Kanal 2.1 |  |  |
| 9        | Skalierung <i>A</i>                                        | Azimutwinkel          |                       |                       |                       |                       |                           |                           |  |  |
| 10       | Azimutwink                                                 | el                    |                       |                       |                       |                       |                           |                           |  |  |
| 11       |                                                            |                       |                       |                       |                       |                       |                           |                           |  |  |
| 12       | Signalstärke Schaltsignal Schaltsignal Kanal 1.2 Kanal 1.1 |                       |                       |                       |                       |                       |                           |                           |  |  |
| 13       | Skalierung <i>A</i>                                        | Abstand               |                       |                       |                       |                       | •                         |                           |  |  |
| 14       | Abstand                                                    |                       |                       |                       |                       |                       |                           |                           |  |  |
| 15       |                                                            |                       |                       |                       |                       |                       |                           |                           |  |  |



| Bezeichnung            | Skalierung  | Wertebereich | Bedeutung                                                                                                                     |
|------------------------|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------|
| Abstand                | 1 mm/bit    | 064255 mm    | Abstand eines Objekts zum Sensor.                                                                                             |
| Azimut-Winkel          | 0,5°/bit    | -65+60°      | Prozesswert für den Azimut-Winkel, in dem sich ein Objekt zum Sensor befindet.                                                |
| Elevationswinkel       | 0,5°/bit    | -65+60°      | Prozesswert für den Elevationswinkel, in dem sich ein Objekt zum Sensor befindet.                                             |
| Geschwindigkeit        | 0,1 m/s/bit | -9+9 m/s     | Geschwindigkeit eines erkannten Objekts                                                                                       |
| Signalstärke           | 2 %         | 0126 %       | Stärke des Signals, das ein erkanntes<br>Objekt reflektiert                                                                   |
| keine Messdaten        |             |              | 0: Objekt im Erfassungsbereich erkannt,<br>Prozessdaten werden ausgegeben<br>1: kein Objekt im Erfassungsbereich er-<br>kannt |
| Radius 16              |             |              | 0: kein Objekt in Radius erkannt<br>1: Objekt in Radius erkannt                                                               |
| interner Fehler        |             |              | Fehler, Diagnose vorhanden                                                                                                    |
| Signalfeld 13<br>Bit 1 |             |              | Der Zustand eines Signalfelds ergibt sich aus der Kombination von zwei Bits (siehe                                            |
| Signalfeld 13<br>Bit 2 |             |              | Tabelle Zustand eines Signalfelds: Mögliche Bit-Kombinationen)                                                                |

# Zustand eines Signalfelds: Mögliche Bit-Kombinationen

| Bit 1 | Bit 2 | Bedeutung                                               |
|-------|-------|---------------------------------------------------------|
| 0     | 0     | kein Objekt im Signalfeld, Signalfeld nicht verschattet |
| 1     | 0     | Signalfeld verschattet                                  |
| 0     | 1     | Kollision erkannt                                       |
| 1     | 1     | Kollision erkannt, Signalfeld verschattet               |

## Prozess-Ausgangsdaten

| Byte-Nr. | Bit                   |   |   |   |   |   |   |   |
|----------|-----------------------|---|---|---|---|---|---|---|
|          | 7                     | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 0        | Prozess-Ausgangsdaten |   |   |   |   |   |   |   |

## 7.2 SIO-Modus einrichten

- ► Gerät an einen Standard-I/O-Port oder einen Analog-Port anschließen.
- ⇒ Nach einer Bereitschaftsverzögerung von 500 ms ist das Gerät betriebsbereit.

Die Bereitschaftsverzögerung im SIO-Modus ist erforderlich für den Betrieb von vorbetätigten Sensoren, damit der Sensor ausschließen kann, an einen IO-Link-Master angeschlossen zu sein. Die Bereitschaftsverzögerung hat keinen Einfluss auf eine potenzielle IO-Link-Kommunikation.



## 7.3 In Betrieb nehmen mit SAE J1939

Beim Einschalten sendet das Gerät ein J1939-Paket über CAN, das als NAME bezeichnet wird. Der NAME ist eine 64 Bits (8 Bytes) lange Bezeichnung, die jeder Einheit eine eindeutige Identität zuweist.

Das letzte Byte im Identifier zeigt die J1939-Adresse an. Die Default-Adresse des Sensors ist 0x80 (128 $_{\rm dez}$ ). Der Wertebereich für die Adresse beträgt 0x80...0xF7 (128 $_{\rm dez}$ ...247 $_{\rm dez}$ ). Der NAME wird im Little-Endian-Format im Datenfeld übertragen und ist wie folgt strukturiert:

| Frei<br>wählbare<br>Adresse | Branchen-<br>gruppe | Fahrzeug-<br>system-<br>Instanz | Fahrzeug-<br>system | reserviert | Funktion | Funktions-<br>Instanz | ECU-<br>Instanz | Hersteller-<br>code | Identifika-<br>tions<br>nummer |
|-----------------------------|---------------------|---------------------------------|---------------------|------------|----------|-----------------------|-----------------|---------------------|--------------------------------|
| 1 Bit                       | 3 Bits              | 4 Bits                          | 7 Bits              | 1 Bit      | 8 Bits   | 5 Bits                | 3 Bits          | 11 Bits             | 21 Bits                        |

| Byte-Nr. | Bit                         |                           |                        |             |                        |           |      |            |
|----------|-----------------------------|---------------------------|------------------------|-------------|------------------------|-----------|------|------------|
|          | 7                           | 6                         | 5                      | 4           | 3                      | 2         | 1    | 0          |
| 0        | Identifikat                 | ionsnumm                  | er, (LSB $\rightarrow$ | MSB)        |                        |           |      |            |
| 1        |                             |                           |                        |             |                        |           |      |            |
| 2        | Hersteller                  | code, LSB -               | → MSB                  | Identifikat | ionsnumm               | ier       |      |            |
| 3        | Hersteller                  | code                      |                        |             |                        |           |      |            |
| 4        | Funktions                   | -Instanz                  |                        |             |                        | ECU-Insta | nz   |            |
| 5        | Funktion                    |                           |                        |             |                        |           |      |            |
| 6        | Fahrzeugs                   | Fahrzeugsystem reserviert |                        |             |                        |           |      | reserviert |
| 7        | Frei<br>wählbare<br>Adresse |                           |                        |             | Fahrzeugsystem-Instanz |           | tanz |            |



#### 7.3.1 SAE J1939-Parameterdaten

Zur Übertragung der Daten wird PGN 0xEF... (Proprietary A) genutzt. Die Default-Adresse des Sensors ist 0x80 (128 $_{\rm dez}$ ). Der Wertebereich für die Adresse beträgt 0x80...0xF7 (128 $_{\rm dez}$ ... 247 $_{\rm dez}$ .).

Die Parameterdaten bestehen aus 8 Byte mit folgendem Inhalt:

| Byte-Nr. | Bit        |            |            |            |            |            |            |                     |
|----------|------------|------------|------------|------------|------------|------------|------------|---------------------|
|          | 7          | 6          | 5          | 4          | 3          | 2          | 1          | 0                   |
| 0        | Index (LSE | BMSB)      |            |            |            |            |            |                     |
| 1        |            |            |            |            |            |            |            |                     |
| 2        | Subindex   | (LSBMSE    | 3)         |            |            |            |            |                     |
| 3        | r/w (MSB)  | reserviert | reserviert | reserviert | reserviert | reserviert | reserviert | reserviert<br>(LSB) |
| 4        | Daten (LSI | 3MSB)      |            |            |            |            |            |                     |
| 5        |            |            |            |            |            |            |            |                     |
| 6        |            |            |            |            |            |            |            |                     |
| 7        |            |            |            |            |            |            |            |                     |

Zusätzlich zu den Parameterdaten muss die ID des Geräts im gesendeten Frame enthalten sein. Die ID ist wie folgt aufgebaut:

| Byte | Inhalt                         |
|------|--------------------------------|
| 0    | 0x18                           |
| 1    | PGN 0xEF (Proprietary A)       |
| 2    | Sensor-Adresse                 |
| 3    | Adresse des SAE J1939-Managers |

## SAE J1939: Parameter-Übersicht

| Name                      | Index | Sub-<br>index | Zugriff        | Wert      | Beschreibung                          |
|---------------------------|-------|---------------|----------------|-----------|---------------------------------------|
| Standardkommando          | 0x2   | 0x0           | write          | 0x80      | Systemkommando                        |
|                           |       |               |                | 0x81      | Anwendung rücksetzen                  |
|                           |       |               |                | 0x82      | Auslieferungszustand wiederherstellen |
|                           |       |               |                | 0x83      | Back-to-Box                           |
| Fehlerzähler              | 0x20  | 0x0           | read           |           |                                       |
| Betriebsstunden           | 0x48  | 0x0           | read           |           |                                       |
| SSC 1.1 (Distanz)         | 0x49  | 0x1           | read           |           |                                       |
| SSC 1.2 (Distanz)         | 0x49  | 0x2           | read           |           |                                       |
| SSC 2.1 (Azimut)          | 0x49  | 0x3           | read           |           |                                       |
| SSC 2.2 (Azimut)          | 0x49  | 0x4           | read           |           |                                       |
| SSC 3.1 (Elevation)       | 0x49  | 0x5           | read           |           |                                       |
| SSC 3.2 (Elevation)       | 0x49  | 0x6           | read           |           |                                       |
| SSC 4.1 (Geschwindigkeit) | 0x49  | 0x7           | read           |           |                                       |
| SSC 4.2 (Geschwindigkeit) | 0x49  | 0x8           | read           |           |                                       |
| Betriebsstundengrenze     | 0x4A  | 0x0           | read/<br>write | 071582788 |                                       |



| Name                      | Index | Sub-<br>index | Zugriff        | Wert     | Beschreibung            |
|---------------------------|-------|---------------|----------------|----------|-------------------------|
| SSC 1.1 (Distanz)         | 0x4B  | 0x1           | read/<br>write |          |                         |
| SSC 1.2 (Distanz)         | 0x4B  | 0x2           | read/<br>write |          |                         |
| SSC 2.1 (Azimut)          | 0x4B  | 0x3           | read/<br>write |          |                         |
| SSC 2.2 (Azimut)          | 0x4B  | 0x4           | read/<br>write |          |                         |
| SSC 3.1 (Elevation)       | 0x4B  | 0x5           | read/<br>write |          |                         |
| SSC 3.2 (Elevation)       | 0x4B  | 0x6           | read/<br>write |          |                         |
| SSC 4.1 (Geschwindigkeit) | 0x4B  | 0x7           | read/<br>write |          |                         |
| SSC 4.2 (Geschwindigkeit) | 0x4B  | 0x8           | read/<br>write |          |                         |
| Polarität                 | 0x53  | 0x0           | read/          | 0        | PNP ( $U_B$ -schaltend) |
|                           |       |               | write          | 1        | NPN (GND-schaltend)     |
|                           |       |               |                | 2        | Automatische Erkennung  |
| SSC 1.1: Distanz          | 0x56  | 0x1           | read/          | 0        | aus                     |
|                           |       |               | write          | 1        | an                      |
| SSC 1.2: Distanz          | 0x56  | 0x2           | read/          | 0        | aus                     |
|                           |       |               | write          | 1        | an                      |
| SSC 2.1: Azimut           | 0x56  | 0x3           | read/          | 0        | aus                     |
|                           |       |               | write          | 1        | an                      |
| SSC 2.2: Azimut           | 0x56  | 0x4           | read/          | 0        | aus                     |
|                           |       |               | write          | 1        | an                      |
| SSC 3.1: Elevation        | 0x56  | 0x5           | read/          | 0        | aus                     |
|                           |       |               | write          | 1        | an                      |
| SSC 3.2: Elevation        | 0x56  | 0хб           | read/          | 0        | aus                     |
|                           |       |               | write          | 1        | an                      |
| SSC 4.1: Geschwindigkeit  | 0x56  | 0x7           | read/          | 0        | aus                     |
|                           |       |               | write          | 1        | an                      |
| SSC 4.2: Geschwindigkeit  | 0x56  | 0x8           | read/          | 0        | aus                     |
|                           |       |               | write          | 1        | an                      |
| Polarität                 | 0x5F  | 0x0           | read/          | 0        | PNP (UB schaltend)      |
|                           |       |               | write          | 1        | NPN (GND schaltend)     |
|                           |       |               |                | 2        | automatische Erkennung  |
| Distanz                   | 0x69  | 0x1           | read           | 30015050 |                         |
| Azimut                    | 0x69  | 0x2           | read           | -650650  |                         |
| Elevation                 | 0x69  | 0x3           | read           | -650650  |                         |
| Geschwindigkeit           | 0x69  | 0x4           | read           | -9090    |                         |
| Distanz                   | 0     | 0.71          | road           | 30015050 |                         |
|                           | 0x6A  | 0x1           | read           | 30013030 |                         |



| Name                                             | Index | Sub-<br>index | Zugriff        | Wert    | Beschreibung |
|--------------------------------------------------|-------|---------------|----------------|---------|--------------|
| Elevation                                        | 0x6A  | 0x3           | read           | -650650 |              |
| Geschwindigkeit                                  | 0x6A  | 0x4           | read           | -9090   |              |
| Schaltausgangsdämpfung                           | 0x71  | 0x0           | read/<br>write | 0800    |              |
| SSC 1.1: Einschaltverzögerung<br>Distanz         | 0x78  | 0x1           | read/<br>write | 0600    |              |
| SSC 1.2: Einschaltverzögerung<br>Distanz         | 0x78  | 0x2           | read/<br>write | 0600    |              |
| SSC 2.1: Einschaltverzögerung<br>Azimut          | 0x78  | 0x3           | read/<br>write | 0600    |              |
| SSC 2.2: Einschaltverzögerung<br>Azimut          | 0x78  | 0x4           | read/<br>write | 0600    |              |
| SSC 3.1: Einschaltverzögerung<br>Elevation       | 0x78  | 0x5           | read/<br>write | 0600    |              |
| SSC 3.2: Einschaltverzögerung<br>Elevation       | 0x78  | 0x6           | read/<br>write | 0600    |              |
| SSC 4.1: Einschaltverzögerung<br>Geschwindigkeit | 0x78  | 0x7           | read/<br>write | 0600    |              |
| SSC 4.2: Einschaltverzögerung<br>Geschwindigkeit | 0x78  | 0x8           | read/<br>write | 0600    |              |
| SSC 1.1: ausschaltverzögerung<br>Distanz         | 0x79  | 0x1           | read/<br>write | 0600    |              |
| SSC 1.2: Ausschaltverzögerung<br>Distanz         | 0x79  | 0x2           | read/<br>write | 0600    |              |
| SSC 2.1: Ausschaltverzögerung<br>Azimut          | 0x79  | 0x3           | read/<br>write | 0600    |              |
| SSC 2.2: Ausschaltverzögerung<br>Azimut          | 0x79  | 0x4           | read/<br>write | 0600    |              |
| SSC 3.1: Ausschaltverzögerung<br>Elevation       | 0x79  | 0x5           | read/<br>write | 0600    |              |
| SSC 3.2: Ausschaltverzögerung<br>Elevation       | 0x79  | 0x6           | read/<br>write | 0600    |              |
| SSC 4.1: Ausschaltverzögerung<br>Geschwindigkeit | 0x79  | 0x7           | read/<br>write | 0600    |              |
| SSC 4.2: Ausschaltverzögerung<br>Geschwindigkeit | 0x79  | 0x8           | read/<br>write | 0600    |              |
| Signalstärkenanzeige                             | 0x7C  | 0x0           | read/<br>write | 0       | aus          |
| Azimut Winkelausblendung rechts                  | 0x80  | 0x0           | read/<br>write | -600500 |              |
| Azimut Winkelausblendung links                   | 0x81  | 0x0           | read/<br>write | -500600 |              |
| Elevation Winkelausblendung unten                | 0x82  | 0x0           | read/<br>write | -600500 |              |
| Elevation Winkelausblendung oben                 | 0x83  | 0x0           | read/<br>write | -500600 |              |
|                                                  |       |               |                |         |              |



| Name                          | Index | Sub-<br>index | Zugriff        | Wert     | Beschreibung                      |
|-------------------------------|-------|---------------|----------------|----------|-----------------------------------|
| Signalamplitude Filtermodus   | 0x90  | 0x0           | read/          | 0        | deaktiviert                       |
|                               |       |               | write          | 1        | max. Amplitude aktiviert          |
|                               |       |               |                | 2        | min. Amplitude aktiviert          |
|                               |       |               |                | 3        | max. und min. Amplitude aktiviert |
| Max. Amplitude                | 0x91  | 0x0           | read/<br>write | 4010000  |                                   |
| Min. Amplitude                | 0x92  | 0x0           | read/<br>write | 109970   |                                   |
| Vordergrundausblendung        | 0x94  | 0x0           | read/<br>write | 30014950 |                                   |
| Hintergrundausblendung        | 0x95  | 0x0           | read/<br>write | 40015050 |                                   |
| Objektgröße                   | 0xA9  | 0x0           | read/          | 0        | 0,15 m                            |
|                               |       |               | write          | 1        | 0,5 m                             |
|                               |       |               |                | 2        | 0,75 m                            |
|                               |       |               |                | 3        | 1 m                               |
| Radarbelichtungszeit          | 0xAA  | 0x0           | read/          | 2        | 2                                 |
|                               |       |               | write          | 3        | 3                                 |
|                               |       |               |                | 4        | 4                                 |
|                               |       |               |                | 5        | 5                                 |
| Präzisionsmodus               | 0xAB  | 0x0           | read/          | 0        | aus                               |
|                               |       |               | write          | 1        | ein                               |
| Sicherheitsabstand um Objekte | 0xAC  | 0x0           | read/<br>write | 0500     |                                   |
| Radius 1                      | 0xB0  | 0x1           | read/          | 015000   |                                   |
|                               |       |               | write          | 0        | deaktiviert                       |
| Radius 2                      | 0xB0  | 0x2           | read/          | 015000   |                                   |
|                               |       |               | write          | 0        | deaktiviert                       |
| Radius 3                      | 0xB0  | 0x3           | read/          | 015000   |                                   |
|                               |       |               | write          | 0        | deaktiviert                       |
| Radius 4                      | 0xB0  | 0x4           | read/          | 015000   |                                   |
|                               |       |               | write          | 0        | deaktiviert                       |
| Radius 5                      | 0xB0  | 0x5           | read/          | 015000   |                                   |
|                               |       |               | write          | 0        | deaktiviert                       |
| Radius 6                      | 0xB0  | 0x6           | read/          | 015000   |                                   |
|                               |       |               | write          | 0        | deaktiviert                       |
| Signalfeld 1: Distanz nah     | 0xB1  | 0x1           | read/          | 015000   |                                   |
| -                             |       |               | write          | 0        | deaktiviert                       |
| Signalfeld 1: Distanz weit    | 0xB1  | 0x2           | read/          | 015000   |                                   |
| -                             |       |               | write          | 0        | deaktiviert                       |
| Signalfeld 1: Azimut rechts   | 0xB1  | 0x3           | read/<br>write | -600600  |                                   |



| Name                                           | Index | Sub-  | Zugriff        | Wert    | Beschreibung                                                   |
|------------------------------------------------|-------|-------|----------------|---------|----------------------------------------------------------------|
|                                                | 0 D1  | index | 1.4            |         |                                                                |
| Signalfeld 1: Azimut links                     | 0xB1  | 0x4   | read/<br>write | -600600 |                                                                |
| Signalfeld 1: Elevation unten                  | 0xB1  | 0x5   | read/<br>write | -600600 |                                                                |
| Signalfeld 1: Elevation oben                   | 0xB1  | 0x6   | read/<br>write | -600600 |                                                                |
| Signalfeld 2: Distanz nah                      | 0xB2  | 0x1   | read/<br>write | 015000  | deaktiviert                                                    |
| Signalfeld 2: Distanz weit                     | 0xB2  | 0x2   | read/          | 015000  | acuntiviere                                                    |
| <b>3</b> · · · · · · · · · · · · · · · · · · · |       |       | write          | 0       | deaktiviert                                                    |
| Signalfeld 2: Azimut rechts                    | 0xB2  | 0x3   | read/<br>write | -600600 |                                                                |
| Signalfeld 2: Azimut links                     | 0xB2  | 0x4   | read/<br>write | -600600 |                                                                |
| Signalfeld 2: Elevation unten                  | 0xB2  | 0x5   | read/<br>write | -600600 |                                                                |
| Signalfeld 2: Elevation oben                   | 0xB2  | 0x6   | read/<br>write | -600600 |                                                                |
| Signalfeld 3: Distanz nah                      | 0xB3  | 0x1   | read/          | 015000  |                                                                |
|                                                |       |       | write          | 0       | deaktiviert                                                    |
| Signalfeld 3: Distanz weit                     | 0xB3  | 0x2   | read/          | 015000  |                                                                |
|                                                |       |       | write          | 0       | deaktiviert                                                    |
| Signalfeld 3: Azimut rechts                    | 0xB3  | 0x3   | read/<br>write | -600600 |                                                                |
| Signalfeld 3: Azimut links                     | 0xB3  | 0x4   | read/<br>write | -600600 |                                                                |
| Signalfeld 3: Elevation unten                  | 0xB3  | 0x5   | read/<br>write | -600600 |                                                                |
| Signalfeld 3: Elevation oben                   | 0xB3  | 0x6   | read/<br>write | -600600 |                                                                |
| Schaltausgänge                                 | 0xB4  | 0x1   | read/<br>write | 0       | Schaltend an beiden Ausgängen / Kollisionserkennung<br>aus     |
|                                                |       |       |                | 1       | Schaltend an Ausgang 1 / Kollisi-<br>onserkennung an Ausgang 2 |
|                                                |       |       |                | 2       | Schaltend an Ausgang 2 / Kollisionserkennung an Ausgang 1      |
|                                                |       |       |                | 3       | Kollisionserkennung an beiden<br>Ausgängen                     |



| Name                          | Index | Sub-<br>index | Zugriff        | Wert  | Beschreibung                   |
|-------------------------------|-------|---------------|----------------|-------|--------------------------------|
| Kollisionserkennung Schalt-   | 0xB4  | 0x2           | read/          | 0     | aus                            |
| ausgang 1                     |       |               | write          | 1     | Radius 1                       |
|                               |       |               |                | 2     | Radius 2                       |
|                               |       |               |                | 3     | Radius 3                       |
|                               |       |               |                | 4     | Radius 4                       |
|                               |       |               |                | 5     | Radius 5                       |
|                               |       |               |                | 6     | Radius 6                       |
|                               |       |               |                | 10    | Signalfeld 1                   |
|                               |       |               |                | 11    | Signalfeld 2                   |
|                               |       |               |                | 12    | Signalfeld 3                   |
| Kollisionserkennung Schalt-   | 0xB4  | 0x3           | read/          | 0     | aus                            |
| ausgang 2                     |       |               | write          | 1     | Radius 1                       |
|                               |       |               |                | 2     | Radius 2                       |
|                               |       |               |                | 3     | Radius 3                       |
|                               |       |               |                | 4     | Radius 4                       |
|                               |       |               |                | 5     | Radius 5                       |
|                               |       |               |                | 6     | Radius 6                       |
|                               |       |               |                | 10    | Signalfeld 1                   |
|                               |       |               |                | 11    | Signalfeld 2                   |
|                               |       |               |                | 12    | Signalfeld 3                   |
| Logik Ausgang 1               | 0xB4  | 0x4           | read/          | false | Schließer                      |
| Logit / taogang i             | OND I | OX I          | write          | true  | Öffner                         |
| Polarität Ausgang 1           | 0xB4  | 0x5           | read/          | 0     | PNP                            |
| r siantat /tasgang i          | OND I | OAS           | write          | 1     | NPN                            |
|                               |       |               |                | 2     | automatische Erkennung         |
| Logik Ausgang 2               | 0xB4  | 0x6           | read/          | false | Schließer                      |
| Logik Adagang 2               | ONDT  | OXO           | write          | true  | Öffner                         |
| Polarität Ausgang 2           | 0xB4  | 0x7           | read/          | 0     | PNP                            |
| Tolantat Ausgang 2            | UND   | 0.77          | write          | 1     | NPN                            |
|                               |       |               |                | 2     | automatische Erkennung         |
| Ausblenden von nicht-bewegten | OvR5  | 0x0           | read/          | 0     | alle Objekte                   |
| Objekten                      | UXD3  | UXU           | write          | 1     | nur bewegte Objekte            |
|                               | 0xC8  | 0,40          | read/          | 0     |                                |
| Sensor-Ausrichtung            | UXC8  | 0x0           | read/<br>write |       | 0° M12-Stecker unten (Default) |
|                               |       |               |                | 1     | 90°<br>180°                    |
|                               |       |               |                | 2     |                                |
| Fufa annua annualanni III     | 0CF   | 00            |                | 3     | 270°                           |
| Erfassungsschwelle            | 0xCE  | 0x0           | read/<br>write | 50350 |                                |
| Objektdichte in Abstand       | 0xCF  | 0x0           | read/          | 0     | verbreitet                     |
| Objectulcine ili Abstallu     | UNCI  | UAU           | write          | 1     | dicht                          |
|                               |       |               |                | 1     | dicit                          |



| Name                     | Index  | Sub-<br>index | Zugriff        | Wert     | Beschreibung      |
|--------------------------|--------|---------------|----------------|----------|-------------------|
| Physikalischer Ausgang 1 | 0xD1   | 0x0           | read/          | 0        | Distanz           |
|                          |        |               | write          | 1        | Azimut            |
|                          |        |               |                | 2        | Elevation         |
|                          |        |               |                | 3        | Geschwindigkeit   |
| Physikalischer Ausgang 2 | 0xD2   | 0x0           | read/          | 0        | Distanz           |
|                          |        |               | write          | 1        | Azimut            |
|                          |        |               |                | 2        | Elevation         |
|                          |        |               |                | 3        | Geschwindigkeit   |
| SSC 1.1: SP1             | 0x3C   | 0x1           | read/<br>write | 40015000 |                   |
| SSC 1.1: SP2             | 0x3C   | 0x2           | read/<br>write | 35014950 |                   |
| SSC 1.1: Logik           | 0x3D   | 0x0           | read/          | 0        | Schließer         |
|                          |        |               | write          | 1        | Öffner            |
| SSC 1.1: Schaltmodus     | 0x3D   | 0x1           | read/          | 0        | deaktiviert       |
|                          |        |               | write          | 1        | Single Point Mode |
|                          |        |               |                | 2        | Window Modus      |
|                          |        |               |                | 3        | Two Point Mode    |
| SSC 1.1: Hysterese       | 0x3D   | 0x2           | read/<br>write | 5014650  |                   |
| SSC 1.2: SP1             | 0x3E   | 0x0           | read/          | 40015000 |                   |
|                          |        |               | write          |          |                   |
| SSC 1.2: SP2             | 0x3E   | 0x1           | read/<br>write | 35014950 |                   |
| SSC 1.2: Logik           | 0x3F   | 0x0           | read/          | 0        | Schließer         |
|                          |        |               | write          | 1        | Öffner            |
| SSC 1.2: Schaltmodus     | 0x3F   | 0x1           | read/          | 0        | deaktiviert       |
|                          |        |               | write          | 1        | Single Point Mode |
|                          |        |               |                | 2        | Window Modus      |
|                          |        |               |                | 3        | Two Point Mode    |
| SSC 1.2: Hysterese       | 0x3F   | 0x2           | read/<br>write | 5014650  |                   |
| SSC 2.1: SP2             | 0x400C | 0x2           | read/<br>write | -600500  |                   |
| SSC 2.1: Logik           | 0x400D | 0x1           | read/          | 0        | Schließer         |
|                          |        |               | write          | 1        | Öffner            |
| SSC 2.1: Schaltmodus     | 0x400D | 0x2           | read/          | 0        | deaktiviert       |
|                          |        |               | write          | 1        | Single Point Mode |
|                          |        |               |                | 2        | Window Modus      |
|                          |        |               |                | 3        | Two Point Mode    |
| SSC 2.1: Hysterese       | 0x400D | 0x3           | read/<br>write | 5014650  |                   |
| SSC 2.2: SP1             | 0x400E | 0x1           | read/<br>write | 40015000 |                   |



| SSC 2.2: SP2 0x400E 0x2 read/<br>write       | 35014950            |
|----------------------------------------------|---------------------|
| SSC 2.2: Logik 0x400F 0x1 read/              | 0 Schließer         |
| write                                        | 1 Öffner            |
| SSC 2.2: Schaltmodus 0x400F 0x2 read/        | 0 deaktiviert       |
| write                                        | 1 Single Point Mode |
|                                              | 2 Window Modus      |
|                                              | 3 Two Point Mode    |
| SSC 2.2: Hysterese 0x400F 0x3 read/write     | 5014650             |
| SSC 3.1: SP1 0x401C 0x1 read/<br>write       | 40015000            |
| SSC 3.1: SP2 0x401C 0x2 read/<br>write       | 35014950            |
| SSC 3.1: Logik 0x401D 0x1 read/              | 0 Schließer         |
| write                                        | 1 Öffner            |
| SSC 3.1: Schaltmodus 0x401D 0x2 read/        | 0 deaktiviert       |
| write                                        | 1 Single Point Mode |
|                                              | 2 Window Modus      |
|                                              | 3 Two Point Mode    |
| SSC 3.1: Hysterese 0x401D 0x3 read/<br>write | 5014650             |
| SSC 3.2: SP1 0x401E 0x1 read/<br>write       | 40015000            |
| SSC 3.2: SP2 0x401E 0x2 read/<br>write       | 35014950            |
| SSC 3.2: Logik 0x401F 0x1 read/              | 0 Schließer         |
| write                                        | 1 Öffner            |
| SSC 3.2: Schaltmodus 0x401F 0x2 read/        | 0 deaktiviert       |
| write                                        | 1 Single Point Mode |
|                                              | 2 Window Modus      |
|                                              | 3 Two Point Mode    |
| SSC 3.2: Hysterese 0x401F 0x3 read/<br>write | 5014650             |
| SSC 4.1: SP1 0x402C 0x1 read/<br>write       | 40015000            |
| SSC 4.1: SP2 0x402C 0x2 read/<br>write       | 35014950            |
| SSC 4.1: Logik 0x402D 0x1 read/              | 0 Schließer         |
| write                                        | 1 Öffner            |
| SSC 4.1: Schaltmodus 0x402D 0x2 read/        | 0 deaktiviert       |
| write                                        | 1 Single Point Mode |
|                                              | 2 Window Modus      |
|                                              | 3 Two Point Mode    |



| Name                 | Index  | Sub-<br>index | Zugriff        | Wert     | Beschreibung      |
|----------------------|--------|---------------|----------------|----------|-------------------|
| SSC 4.1: Hysterese   | 0x402D | 0x3           | read/<br>write | 5014650  |                   |
| SSC 4.2: SP1         | 0x402E | 0x1           | read/<br>write | 40015000 |                   |
| SSC 4.2: SP2         | 0x402E | 0x2           | read/<br>write | 35014950 |                   |
| SSC 4.2: Logik       | 0x402F | 0x1           | read/          | 0        | Schließer         |
|                      |        |               | write          | 1        | Öffner            |
| SSC 4.2: Schaltmodus | 0x402F | 0x2           | read/          | 0        | deaktiviert       |
|                      |        |               | write          | 1        | Single Point Mode |
|                      |        |               |                | 2        | Window Modus      |
|                      |        |               |                | 3        | Two Point Mode    |
| SSC 4.2: Hysterese   | 0x402F | 0x3           | read/<br>write | 5014650  |                   |

#### 7.3.2 SAE J1939-Prozessdaten

Über die SAE J1939-Schnittstelle gibt das Gerät 64 Bit Prozessdaten an die übergeordnete Steuerung weiter. Zur Übertragung der Daten wird PG 0xFF20 (65312<sub>dez</sub>) genutzt. Die Prozessdaten sind wie folgt strukturiert:

| Byte-Nr. | Bit                   | Bit                   |                       |                       |                       |                       |            |                    |  |
|----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------|--------------------|--|
|          | 7                     | 6                     | 5                     | 4                     | 3                     | 2                     | 1          | 0                  |  |
| 0        | Abstand               | Abstand               |                       |                       |                       |                       |            |                    |  |
| 1        |                       |                       |                       |                       |                       |                       |            |                    |  |
| 2        | Azimut-Win            | Azimut-Winkel         |                       |                       |                       |                       |            |                    |  |
| 3        | Elevationsw           | Elevationswinkel      |                       |                       |                       |                       |            |                    |  |
| 4        | Geschwindi            | gkeit                 |                       |                       |                       |                       |            |                    |  |
| 5        | Signalstärke          | !                     |                       |                       |                       |                       |            |                    |  |
| 6        | Radius 6              | Radius 5              | Radius 4              | Radius 3              | Radius 2              | Radius 1              | reserviert | keine<br>Messdaten |  |
| 7        | Signalfeld 3<br>Bit 2 | Signalfeld 3<br>Bit 1 | Signalfeld 2<br>Bit 2 | Signalfeld 2<br>Bit 1 | Signalfeld 1<br>Bit 2 | Signalfeld 1<br>Bit 1 | reserviert | interner<br>Fehler |  |



# Bedeutung der Status-Bits



#### **HINWEIS**

Die Prozesswerte beziehen sich je nach Einstellung auf das Objekt, das sich am nächsten am Sensor befindet oder das am stärksten reflektiert.

| Bezeichnung            | Slot-Name   | Slot Identifier | Skalierung  | Wertebereich | Bedeutung                                                                                                                            |
|------------------------|-------------|-----------------|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Abstand                | SAEds12     | 231             | 1 mm/bit    | 064255 mm    | Abstand eines Objekts zum<br>Sensor.                                                                                                 |
| Azimut-Winkel          | SAEad10     | 248             | 0,5°/bit    | -65+60°      | Prozesswert für den Azimut-<br>Winkel, in dem sich ein<br>Objekt zum Sensor befindet.                                                |
| Elevationswinkel       | SAEad10     | 248             | 0,5°/bit    | -65+60°      | Prozesswert für den Elevati-<br>onswinkel, in dem sich ein<br>Objekt zum Sensor befindet.                                            |
| Geschwindigkeit        | proprietary |                 | 0,1 m/s/bit | -9+9 m/s     | Geschwindigkeit eines<br>erkannten Objekts                                                                                           |
| Signalstärke           | proprietary |                 | 2 %         | 0126 %       | Stärke des Signals, das ein<br>erkanntes Objekt reflektiert                                                                          |
| keine Messdaten        |             |                 |             |              | 0: Objekt im Erfassungs-<br>bereich erkannt, Prozess-<br>daten werden ausgegeben<br>1: kein Objekt im Erfassungs-<br>bereich erkannt |
| Radius 16              |             |                 |             |              | 0: kein Objekt in Radius<br>erkannt<br>1: Objekt in Radius erkannt                                                                   |
| interner Fehler        |             |                 |             |              | Fehler, Diagnose vorhanden                                                                                                           |
| Signalfeld 13<br>Bit 1 |             |                 |             |              | Der Zustand eines Signalfelds<br>ergibt sich aus der Kombinati-                                                                      |
| Signalfeld 13<br>Bit 2 |             |                 |             |              | on von zwei Bits (siehe Tabel-<br>le Zustand eines Signalfelds:<br>Mögliche Bit-Kombinationen)                                       |

# Zustand eines Signalfelds: Mögliche Bit-Kombinationen

| Bit 1 | Bit 2 | Bedeutung                                               |
|-------|-------|---------------------------------------------------------|
| 0     | 0     | kein Objekt im Signalfeld, Signalfeld nicht verschattet |
| 1     | 0     | Signalfeld verschattet                                  |
| 0     | 1     | Kollision erkannt                                       |
| 1     | 1     | Kollision erkannt, Signalfeld verschattet               |



# 8 Finstellen und Parametrieren

Die Parametrierung über IO-Link ist im IO-Link-Inbetriebnahmehandbuch beschrieben. Das Verhalten des Sensors kann über IO-Link und TAS applikationsspezifisch angepasst werden. Neben dem Ausgangsverhalten gemäß Smart Sensor Profile und dem Mapping der Schaltausgänge im SIO-Modus lassen sich u. a. folgende messspezifische Parameter einstellen:

- Erfassungsparameter mit Einfluss auf die Erfassungs-Performance des Sensors
- Objekt-Parameter mit Einfluss auf die Auswertung der Rohdaten zur Objekterfassung
- Filter-Parameter zur Anpassung des Erfassungsbereichs auf die Applikation
- Kollisionsparameter zum Einstellen von Radien und Signalfeldern

#### 8.1 Einstellen und Visualisieren mit dem Turck Radar Monitor

Das Gerät kann mit TAS (Turck Automation Suite) parametriert und getestet werden. Über TAS lässt sich die IODD einlesen, sodass ein Zugriff auf alle Parameter der IODD möglich ist.

Eine Übersicht der IO-Link-Parameter sowie Beschreibungen finden Sie über den IODDfinder. Zusätzlich steht zur Visualisierung von Prozessdaten der Turck Radar Monitor zur Verfügung.

Für den Zugriff auf die Sensorparameter und den Turck Radar Monitor ist ein Turck-IO-Link-Master erforderlich.

Informationen zu den Turck-IO-Link-Mastern entnehmen Sie den gerätespezifischen Betriebsanleitungen.

- ▶ IO-Link-Master an die Spannungsversorgung anschließen.
- ▶ IO-Link-Master über die Ethernet-Schnittstelle mit einem PC verbinden.
- ▶ Sensor an einen IO-Link-Port des IO-Link-Masters anschließen.

#### 8.1.1 IODD in TAS einlesen

- ▶ Eingangsport des IO-Link-Masters als IO-Link-Port einstellen.
- ▶ In TAS den Reiter IO-LINK öffnen.
- ▶ Über IODD laden die gerätespezifische IODD in TAS laden.

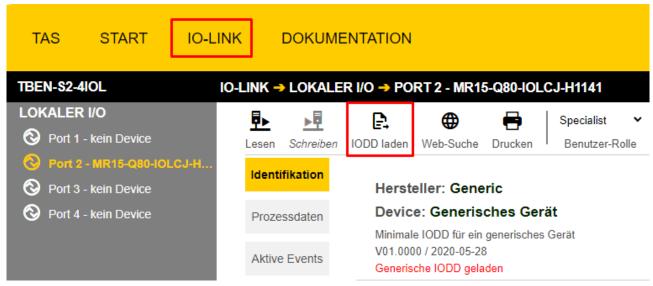



Abb. 18: IODD laden



#### 8.1.2 Turck Radar Monitor: Übersicht

Über den Turck Radar Monitor lassen sich die Prozessdaten visualisieren und Signale filtern. Die Darstellung umfasst:

- FFT-Diagramm
- Objekterkennung

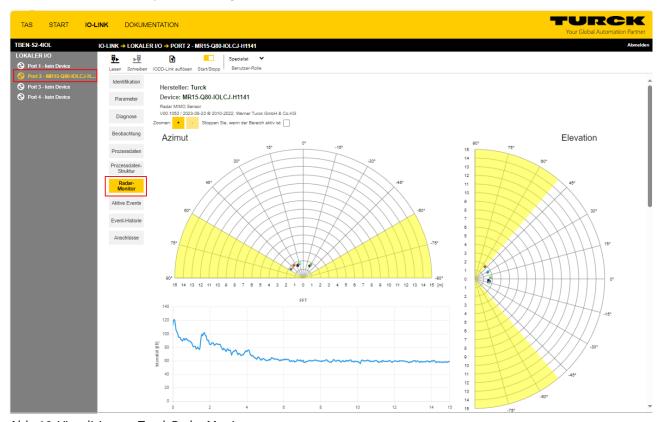



Abb. 19: Visualisierung Turck Radar Monitor

Die dreidimensionale Objekterkennung ist im Turck Radar Monitor durch zwei planare Achsen dargestellt:

- Azimut: Horizontaler Erfassungsbereich
- Elevation: Vertikaler Erfassungsbereich

Die Ansicht lässt sich über die Zoom-Funktion vergrößern oder verkleinern. Wenn **Stoppen Sie, wenn der Bereich aktiv ist** markiert ist, wird die Aktualisierung des Radar Monitors angehalten, wenn ein Objekt in einem der festgelegten Bereiche gefunden wurde. Das Diagramm **FFT** zeigt die Signal-Intensitätskurve.

Über den Parameter **Distanz Einheit** kann zwischen mm, m, in, ft und yd ausgewählt werden. Wird die Maßeinheit geändert, ändert sich auch die Skalierung des Radar Monitors.



Die vom Sensor gefundenen Objekte werden im Turck Radar Monitor tabellarisch aufgelistet. Jedem gefundenen Objekt werden die folgenden Objektdaten zugeordnet:

- Distanz zum Sensor
- Azimut-Winkel
- Elevationswinkel
- Geschwindigkeit
- Signal-Intensität

| Dist. [m] | Δ Dist. [mm] | Azi.[°] | Δ Azi.[°] | Elev.[°] | Δ Elev.[°] | Velo. [m/s] | Ampl.[dB] |
|-----------|--------------|---------|-----------|----------|------------|-------------|-----------|
| 2.221     | 135          | -2.6    | 1.8       | 8.0      | 1.7        | 0.00        | 106.4     |
| 6.245     | 34           | -34     | 0         | 18.2     | 0          | 0.00        | 92.7      |
| 6.261     | 67           | -31.7   | 0         | 18.2     | 0          | 0.00        | 92.8      |
|           |              |         |           |          |            |             |           |
| -         | -            | -       | -         | -        | -          | -           | -         |
| -         | -            | -       | -         | -        | -          | -           | -         |
| -         | -            | -       | -         | -        | -          | -           | -         |
| -         | -            | -       | -         | -        | -          | -           | -         |
| -         | -            | -       | -         | -        | -          | -           | -         |
| _         |              |         | _         | _        | _          | _           |           |

Abb. 20: Tabelle Turck Radar Monitor

Aus den Distanzwerten und den Winkelwerten errechnet der Sensor zusätzlich einen Delta-Wert. Das Delta wird größer, je mehr Datenpunkte zu einem Objekt zusammengefasst werden oder wenn sich der Parameter Objektgröße weiter ausdehnt. Die Angaben im Radar-Monitor zu Abstand, Elevationswinkel und Azimut-Winkel zeigen jeweils den Mittelpunkt eines Objekts. Die Delta-Werte zeigen die Objekt-Umrisse.

#### 8.1.3 Sensor-Empfindlichkeit einstellen

Die Sensor-Empfindlichkeit kann über die Erfassungsschwelle des Sensors und die erwartete Dichte des Erfassungsobjekts eingestellt werden.

 Sensor-Empfindlichkeit über gemäß der folgenden Tabelle applikationsspezifisch anpassen.

| Parameter          | Optionen   | Funktion                                                    | Erklärung                                                                |
|--------------------|------------|-------------------------------------------------------------|--------------------------------------------------------------------------|
| Erfassungsschwelle |            | 535 dB in Schritten von<br>1 dB<br><b>Default: 6,0 dB</b>   | Je kleiner der Wert, desto empfindlicher ist der Sensor.                 |
| Objektdichte       | dicht      | Situative Anpassung des<br>Objekterfassungsalgorith-<br>mus | Einstellung für eine Umgebung, in der viele<br>Objekte erwartet werden   |
|                    | verbreitet |                                                             | Einstellung für eine Umgebung, in der<br>wenige Objekte erwartet werden  |
| Präzisionsmodus    | ein        |                                                             | Optimiert den Sensor auf reine Abstandsmessung. Der Sensor wird genauer. |
|                    | aus        |                                                             |                                                                          |



# 8.1.4 Objektparameter setzen

Über die Objektparameter lässt sich der Sensor an die zu erwartenden Objekte einstellen.

▶ Objektparameter entsprechend der folgenden Tabelle einstellen:

| Parameter                        | Optionen               | Funktion                                                                                 | Erklärung                                                                                                                   |  |  |
|----------------------------------|------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|
| Objektgröße                      | 0,15 m                 |                                                                                          | Innerhalb des gewählten Radius fügt der                                                                                     |  |  |
|                                  | 0,5 m<br>0,75 m        |                                                                                          | Algorithmus zur Objekterzeugung erkann-                                                                                     |  |  |
|                                  |                        |                                                                                          | te Datenpunkte zu einem Objekt zusam-<br>— men. Je größer der ausgewählte Wert,                                             |  |  |
|                                  | 1 m                    |                                                                                          | desto mehr Datenpunkte werden zu einem<br>Objekt zusammengefasst.                                                           |  |  |
| Sicherheitsabstand um<br>Objekte |                        | 0500 mm in Schritten<br>von 1 mm<br><b>Default: 0 mm</b>                                 | Definiert einen Abstand zu einem erfassten<br>Objekt. Durch den Abstand wird ein erfass-<br>tes Objekt virtuell vergrößert. |  |  |
| Radarbelichtungszeit             | 2                      | Anzahl der Bilder, die der<br>Sensor für die Objekt-<br>erfassung übereinander-<br>legt. | Je größer die Radarbelichtungszeit, desto<br>besser können schwach reflektierende<br>Targets erkannt werden [▶11].          |  |  |
|                                  | 3                      |                                                                                          |                                                                                                                             |  |  |
|                                  | 4                      |                                                                                          |                                                                                                                             |  |  |
|                                  | 5                      |                                                                                          |                                                                                                                             |  |  |
| Ausblenden von nicht-            | alle Objekte           |                                                                                          | Der Sensor erfasst alle erkannten Objekte.                                                                                  |  |  |
| bewegten Objekten                | nur bewegte<br>Objekte |                                                                                          | Der Sensor erfasst nur bewegte Objekte.                                                                                     |  |  |
| Objektauswahl                    | nächstes Objekt        |                                                                                          | Der Sensor erfasst das nächste Objekt im<br>Erfassungsbereich.                                                              |  |  |
|                                  | stärkstes Objekt       |                                                                                          | Der Sensor erfasst das Objekt mit der stärksten Signalintensität.                                                           |  |  |

## 8.1.5 Signale filtern

Das Gerät verfügt über Filtermöglichkeiten zur Ausblendung von Störsignalen. Dazu lassen sich Vordergrund und Hintergrund ausblenden sowie Azimut- und Elevationswinkel anpassen.

| Parameter                      | Optionen                             | Funktion                                                                                                  | Erklärung |
|--------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------|
| Signalamplitude<br>Filtermodus | deaktiviert                          | Filter für Signalamplitude<br>deaktiviert                                                                 |           |
|                                | Max. Amplitude<br>aktiviert          | Öffnet das Eingabefenster<br>für max. Signalamplitude,<br>nach der gefiltert werden<br>soll.              |           |
|                                | Min. Amplitude<br>aktiviert          | Öffnet das Eingabefenster<br>für min. Signalamplitude,<br>nach der gefiltert werden<br>soll.              |           |
|                                | Max. und min.<br>Amplitude aktiviert | Öffnet das Eingabefenster<br>für max. und min. Signal-<br>amplitude, nach der gefil-<br>tert werden soll. |           |



| Parameter                                 | Optionen | Funktion                                               | Erklärung                                                                                                                                                                                                                                                                   |  |
|-------------------------------------------|----------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Min. Amplitude                            |          | 1997 dB in Schritten<br>von 0,1 dB<br>Default: aus     | Nur sichtbar, wenn im Parameter Signal-<br>amplitude Filtermodus die Option Min.<br>Amplitude aktiviert oder Max. und min.<br>Amplitude aktiviert ausgewählt ist.<br>Der Wert für Min. Amplitude muss mindestens 3 dB kleiner sein als der Wert für Max.<br>Amplitude.      |  |
| Max. Amplitude                            |          | 41000 dB in Schritten<br>von 0,1 dB<br>Default: aus    | Nur sichtbar, wenn im Parameter Signal-<br>amplitude Filtermodus die Option Max.<br>Amplitude aktiviert oder Max. und min.<br>Amplitude aktiviert ausgewählt ist.<br>Der Wert für Max. Amplitude muss min-<br>destens 4 dB kleiner sein als der Wert für<br>Min. Amplitude. |  |
| Vordergrundausblendung                    | g        | 30014950 mm in Schritten von 1 mm<br>Default: 300 mm   | Der Mindestabstand zwischen Vorder-<br>grundausblendung und Hintergrund-<br>ausblendung beträgt 100 mm. Beispiel:                                                                                                                                                           |  |
| Hintergrundausblendung                    | 3        | 40014950 mm in Schritten von 1 mm<br>Default: 15050 mm | Wird die Vordergrundausblendung auf<br>1000 mm eingestellt, muss die Hinter-<br>grundausblendung ≤ 900 mm oder<br>≥ 1100 mm sein.                                                                                                                                           |  |
| Azimut<br>Winkelausblendung<br>rechts     |          | Default: -60°                                          | Wert für die Begrenzung des Azimut-<br>Winkels nach rechts. Der eingegebene Wert<br>muss kleiner sein als der Wert des Para-<br>meters <b>Azimut Winkelausblendung links</b> .                                                                                              |  |
| Azimut<br>Winkelausblendung links         |          | Default: +60°                                          | Wert für die Begrenzung des Azimut-<br>Winkels nach links. Der eingegebene Wert<br>muss größer sein als der Wert des Para-<br>meters <b>Azimut Winkelausblendung</b><br><b>rechts</b> .                                                                                     |  |
| Elevation<br>Winkelausblendung ober       | 1        | Default: +50°                                          | Wert für die Begrenzung des Elevations-<br>winkels nach oben. Der eingegebene Wert<br>muss größer sein als der Wert des Para-<br>meters Elevation Winkelausblendung<br>unten.                                                                                               |  |
| Elevation<br>Winkelausblendung un-<br>ten |          | Default: -50°                                          | Wert für die Begrenzung des Elevations-<br>winkels nach unten. Der eingegebene Wert<br>muss kleiner sein als der Wert des Para-<br>meters Elevation Winkelausblendung<br>oben.                                                                                              |  |



#### 8.1.6 Kollisionsradien einstellen

Bis zu sechs Kollisionsradien lassen sich unabhängig voneinander einstellen. Wenn in einem Radius ein Objekt erfasst wird, gibt der Sensor ein Signal aus.

| Parameter | Optionen      | Funktion                             | Erklärung |
|-----------|---------------|--------------------------------------|-----------|
| Radius 16 | deaktiviert   |                                      |           |
|           | Wert eingeben | 35015000 mm in<br>Schritten von 1 mm |           |



### 8.1.7 Signalfelder konfigurieren

Bis zu drei applikationsspezifische Signalfelder lassen sich unabhängig voneinander einstellen. Auch ein Überlappen der Signalfelder ist möglich. Wenn in einem Signalfeld ein Objekt erfasst wird, gibt der Sensor ein Signal aus. Je nach Parametrierung kann das Signal als Schaltsignal an einem der Ausgänge oder über die Prozessdaten ausgegeben werden. Ein Signalfeld muss über Distanz zum Sensor, Azimutwinkel und Elevationswinkel definiert werden.

▶ Signalfelder gemäß folgender Tabelle konfigurieren:

|                               | <u> </u>      |                                      | <u>-</u>                                                                                                                                                                          |
|-------------------------------|---------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                     | Optionen      | Funktion                             | Erklärung                                                                                                                                                                         |
| Signalfeld 13: Distanz        | deaktiviert   |                                      |                                                                                                                                                                                   |
| nah                           | Wert eingeben | 35015000 mm in<br>Schritten von 1 mm | Distanzwert für den Anfang des Signalfelds (näher zum Sensor). Der eingegebene Wert muss kleiner sein als der Wert des <b>Parameters Signalfeld 13: Distanz weit</b>              |
| Signalfeld 13: Distanz        | deaktiviert   |                                      |                                                                                                                                                                                   |
| weit                          | Wert eingeben | 35015000 mm in<br>Schritten von 1 mm | Distanzwert für das Ende des Signalfelds<br>(weiter vom Sensor entfernt). Der eingege-<br>bene Wert muss größer sein als der Wert<br>des Parameters Signalfeld 13: Distanz<br>nah |
| Signalfeld 13: Azimut rechts  | deaktiviert   |                                      |                                                                                                                                                                                   |
|                               | Wert eingeben | -60+60° in Schritten<br>von 1°       | Wert für die Ausbreitung des Azimut-<br>Winkels nach rechts. Der eingegebene Wert<br>muss kleiner sein als der Wert des Para-<br>meters <b>Signalfeld 13: Azimut links</b> .      |
| Signalfeld 13: Azimut links   | deaktiviert   |                                      |                                                                                                                                                                                   |
|                               | Wert eingeben | -60+60° in Schritten<br>von 1°       | Wert für die Ausbreitung des Azimut-<br>Winkels nach links. Der eingegebene Wert<br>muss größer sein als der Wert des Para-<br>meters Signalfeld 13: Azimut rechts.               |
| Signalfeld13: Elevation oben  | deaktiviert   |                                      | -                                                                                                                                                                                 |
|                               | Wert eingeben | -50+50° in Schritten<br>von 1°       | Wert für die Ausbreitung des Elevations-<br>winkels nach oben. Der eingegebene Wert<br>muss größer sein als der Wert des Para-<br>meters Signalfeld 13: Elevation unten.          |
| Signalfeld13: Elevation unten | deaktiviert   |                                      |                                                                                                                                                                                   |
|                               | Wert eingeben | -50+50° in Schritten<br>von 1°       | Wert für die Ausbreitung des Elevations-<br>winkels nach unten. Der eingegebene Wert<br>muss kleiner sein als der Wert des Para-<br>meters Signalfeld 13: Elevation oben.         |



#### 8.1.8 Signalstärkenanzeige einstellen

Über die Signalstärkenanzeige lässt sich einstellen, ob die Signalstärke eines erfassten Objekts über die LEDs angezeigt werden soll. Das LED-Verhalten entnehmen Sie [▶ 44].

► Signalstärkenanzeige unter Parameter --> Allgemeine Einstellung einschalten oder ausschalten.

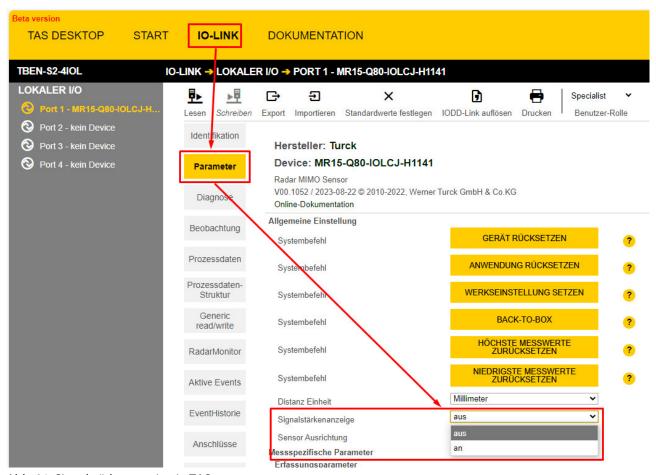



Abb. 21: Signalstärkenanzeige in TAS



#### 8.1.9 Schaltausgang einstellen

Das folgende Beispiel zeigt die Einstellung der Schaltausgänge in TAS. Ausgang 1 wird exemplarisch als reiner Schaltausgang im Zweipunkt-Modus eingestellt, Ausgang 2 wird zur Kollisionserkennung für Radius 1 eingestellt.

Für reine Schaltausgänge müssen je nach ausgewähltem Prozesswert die Parameter für den entsprechenden Kanal gesetzt werden:

| Prozesswert      | Ausgang | Kanal |
|------------------|---------|-------|
| Distanz          | 1       | 1.1   |
|                  | 2       | 1.2   |
| Azimut-Winkel    | 1       | 2.1   |
|                  | 2       | 2.2   |
| Elevationswinkel | 1       | 3.1   |
|                  | 2       | 3.2   |
| Geschwindigkeit  | 1       | 4.1   |
|                  | 2       | 4.2   |

Das Beispiel zeigt die Einstellung von Kanal 2.1 (Azimut-Winkel).

Zur Kollisionserkennung muss über die Parameter oder über den Turck Radar Monitor ein Radius oder ein Signalfeld gesetzt werden.

▶ In TAS den Bereich Parameter öffnen.

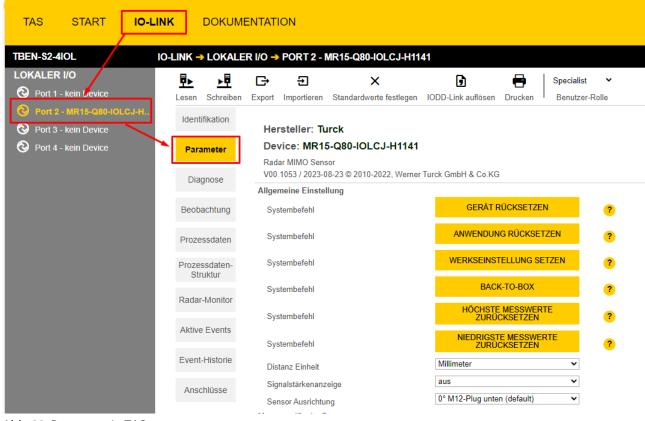



Abb. 22: Parameter in TAS



► Ausgangsverhalten über den Parameter Kollisionskonfiguration → Konfiguration An/ Aus einstellen.

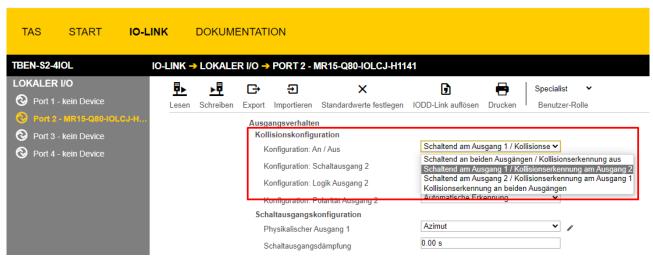



Abb. 23: Ausgangsverhalten einstellen

► Radius über den Parameter Kollisionskonfiguration → Konfiguration: Schaltausgang 2 auswählen (hier: Radius 1).

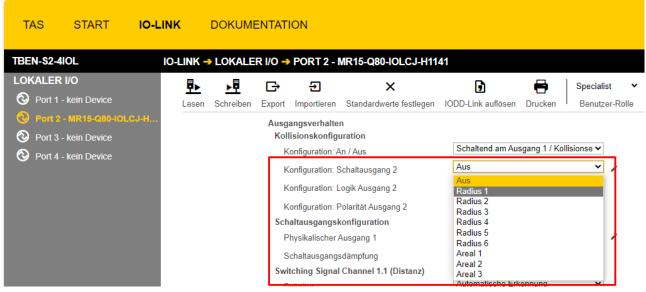



Abb. 24: Radius auswählen



► Radius festlegen (hier: 600 mm).

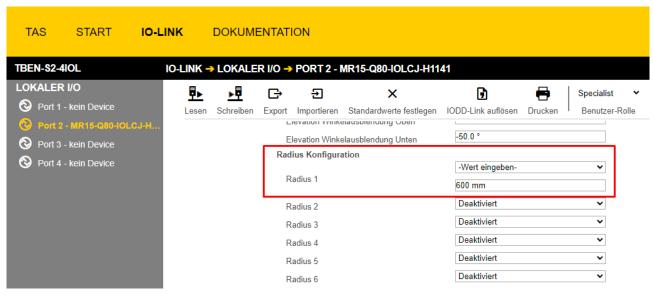



Abb. 25: Radius festlegen

Prozesswert f
ür Schaltausgang 1 festlegen (hier: Azimut-Winkel).

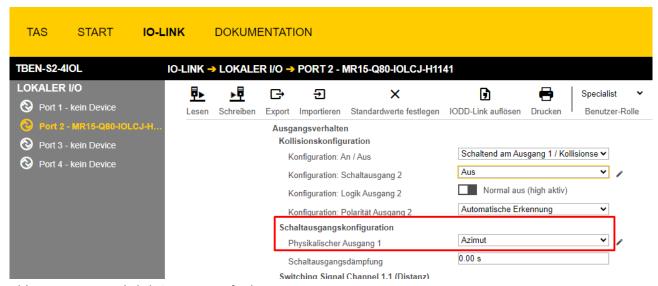



Abb. 26: Azimut-Winkel als Prozesswert festlegen



Parameter für Schaltausgang 1 festlegen (hier: Kanal 2.1).

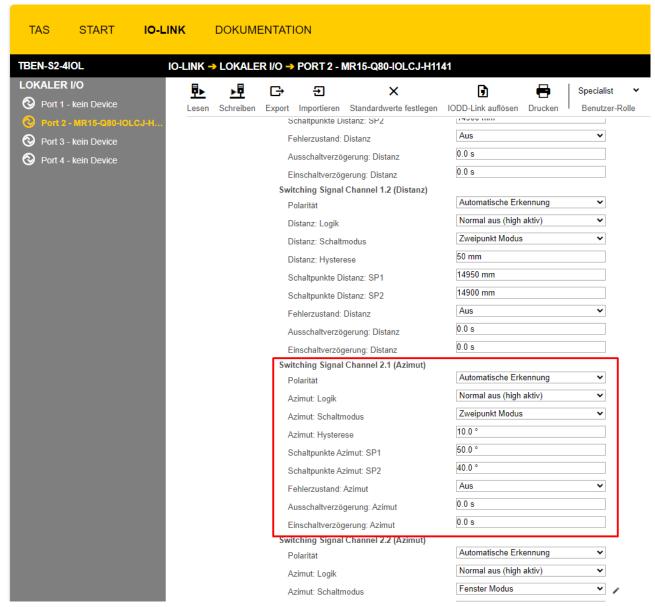



Abb. 27: Parameter festlegen

Schreiben klicken, um die Einstellungen auf dem Gerät zu speichern.



Abb. 28: Einstellungen speichern



# 9 Betreiben

## 9.1 LED-Anzeigen

| LED PWR            | Bedeutung                                                    |
|--------------------|--------------------------------------------------------------|
| grün               | Sensor betriebsbereit, Signalstärke > 108 dB                 |
| blinkt grün (1 Hz) | Signalstärke < 78 dB (wenn Signalstärken-<br>anzeige aktiv)  |
| blinkt grün (4 Hz) | Signalstärke < 108 dB (wenn Signalstärken-<br>anzeige aktiv) |
| gelb               | Ausgang 2 aktiv                                              |
| blinkt gelb        | Kurzschluss an Ausgang 2                                     |

| LED COM                              | Bedeutung                   |
|--------------------------------------|-----------------------------|
| grün                                 | SIO-Modus aktiv             |
| blinkt grün (900 ms an / 100 ms aus) | IO-Link-Kommunikation aktiv |
| blinkt grün (5 Hz)                   | CAN-Kommunikation aktiv     |
| gelb                                 | Ausgang 1 aktiv             |
| blinkt rot                           | Bus-Verbindung unterbrochen |
| blinkt rot/grün                      | Adressanforderung SAE J1939 |

| LED APP     | Bedeutung                   |
|-------------|-----------------------------|
| aus         | kein Objekt erkannt         |
| grün        | Objekt im Erfassungsbereich |
| gelb        | Objekt in Bereich 1         |
| blinkt gelb | Objekt in Radius 1          |

## 9.2 Kombinierte Zustandsanzeigen

| PWR                     | СОМ                     | APP                     | Bedeutung                                                          |
|-------------------------|-------------------------|-------------------------|--------------------------------------------------------------------|
| aus                     | aus                     | aus                     | keine Spannung<br>vorhanden                                        |
| blinkt rot (1 Hz)       | blinkt rot (1 Hz)       | blinkt rot (1 Hz)       | interner<br>Hardwarefehler                                         |
| Lauflicht grün/gelb/rot | Lauflicht grün/gelb/rot | Lauflicht grün/gelb/rot | Firmware-Update aktiv                                              |
| blinkt grün/gelb        | blinkt grün/gelb        | blinkt grün/gelb        | Wink-Kommando zur<br>Geräteidentifizierung<br>innerhalb der Anlage |



# 10 Störungen beseitigen

Wenn das Gerät nicht wie erwartet funktioniert, gehen Sie wie folgt vor:

- ▶ Umgebungsstörungen ausschließen.
- ► Anschlüsse des Geräts auf Fehler untersuchen.
- ► Gerät auf Parametrierfehler überprüfen.

Wenn die Fehlfunktion weiterhin besteht, liegt eine Gerätestörung vor. In diesem Fall nehmen Sie das Gerät außer Betrieb und ersetzen Sie es durch ein neues Gerät des gleichen Typs.



### 11 Instand halten

Das Gerät ist wartungsfrei, bei Bedarf mit einem feuchten Tuch reinigen.

### 12 Reparieren

Das Gerät ist nicht zur Reparatur durch den Benutzer vorgesehen. Sollte das Gerät defekt sein, nehmen Sie es außer Betrieb. Bei Rücksendung an Turck beachten Sie unsere Rücknahmebedingungen.

#### 12.1 Geräte zurücksenden

Rücksendungen an Turck können nur entgegengenommen werden, wenn dem Gerät eine Dekontaminationserklärung beiliegt. Die Erklärung steht unter http://www.turck.de/de/produkt-retoure-6079.php

zur Verfügung und muss vollständig ausgefüllt, wetter- und transportsicher an der Außenseite der Verpackung angebracht sein.

### 13 Entsorgen



Die Geräte müssen fachgerecht entsorgt werden und gehören nicht in den normalen Hausmüll.



# 14 Technische Daten

| Technische Daten                             | MR15-Q80-IOLCJ-H1141                     |
|----------------------------------------------|------------------------------------------|
| ID                                           | 100041054                                |
| Radar-Daten                                  |                                          |
| Funktion                                     | Radar-Taster                             |
| Frequenzbereich                              | 6064 GHz                                 |
| Reichweite                                   | 35015000 mm                              |
| Auflösung                                    | 1 mm                                     |
| Mindestgröße<br>Schaltbereich                | 50 mm                                    |
| Linearitätsfehler                            | ≤ ± 0.3 %                                |
| Kantenlänge des Nenn-<br>betätigungselements | 100 mm                                   |
| Abstrahlleistung ERP                         | 10 dBm                                   |
| Abstrahlleistung EIRP                        | 20 dBm                                   |
| Öffnungswinkel                               | 120°                                     |
| Wiederholgenauigkeit                         | 4 mm                                     |
| Elektrische Daten                            |                                          |
| Betriebsspannung                             | 933 VDC                                  |
| Restwelligkeit                               | < 10 % U <sub>ss</sub>                   |
| DC Bemessungsbetriebs-<br>strom              | ≤ 250 mA                                 |
| Leerlaufstrom                                | ≤ 400 mA                                 |
| Kurzschlussschutz                            | ja/taktend                               |
| Verpolungsschutz                             | ja                                       |
| Kommunikationsprotokoll                      | IO-Link<br>SAE J1939                     |
| Ausgangsfunktion                             | Öffner/Schließer programmierbar, PNP/NPN |
| Ausgang 2                                    | Schaltausgang                            |
| Spannungsfall bei I <sub>e</sub>             | ≤ 2 V                                    |
| Schaltfrequenz                               | ≤ 10 Hz                                  |
| Bereitschaftsverzögerung                     | ≤ 300 ms                                 |
| Absprechzeit typisch                         | < 70 ms                                  |
| IO-Link                                      |                                          |
| IO-Link-Spezifikation                        | V1.1                                     |
| IO-Link-Porttyp                              | Class A                                  |
| Kommunikationsmodus                          | COM 3 (230,4 kBaud)                      |
| Prozessdatenbreite                           | 128 bit                                  |
| Messwertinformation                          | 128 bit                                  |
| Schaltpunktinformation                       | 17 bit                                   |
| Frametyp                                     | 2.2                                      |
| Mindestzykluszeit                            | 3 ms                                     |
| Funktion Pin 4                               | IO-Link                                  |
| Funktion Pin 2                               | DI                                       |



| Technische Daten          | MR15-Q80-IOLCJ-H1141                              |
|---------------------------|---------------------------------------------------|
| Maximale<br>Leitungslänge | 20 m                                              |
| Profilunterstützung       | Smart Sensor Profile                              |
| Mechanische Daten         |                                                   |
| Bauform                   | Quader, Q80                                       |
| Abmessungen               | 90,6 × 80 × 34,6 mm                               |
| Gehäusewerkstoff          | Kunststoff, PBT-GF20 Aluminiumlegierung Druckguss |
| Elektrischer Anschluss    | Steckverbinder, M12 $\times$ 1                    |
| Umgebungstemperatur       | -40+85 °C                                         |
| Lagertemperatur           | -40+85 °C                                         |
| Schutzart                 | IP67 IP68 IP69K (nicht durch die UL bewertet)     |
| Betriebsspannungsanzeige  | LED, grün                                         |
| Schaltzustandsanzeige     | 3-Farben-LED, gelb                                |
| Vibrationsfestigkeit      | 20 g (102000 Hz), EN 60068-2-6                    |
| Schockprüfung             | EN 60068-2-27                                     |
| Schockfestigkeit          | 100 g (11 ms)                                     |
| EMV                       | EN 61000-6-2:2019<br>ETSI EN 301489-3 v.1.6.1     |
| Zulassungen               | CE, ETSI, FCC, UL                                 |



## 15 Turck-Niederlassungen – Kontaktdaten

**Deutschland** Hans Turck GmbH & Co. KG

Witzlebenstraße 7, 45472 Mülheim an der Ruhr

www.turck.de

Australien Turck Australia Pty Ltd

Building 4, 19-25 Duerdin Street, Notting Hill, 3168 Victoria

www.turck.com.au

Belgien Turck Multiprox N. V.

Lion d'Orweg 12, B-9300 Aalst

www.multiprox.be

Brasilien Turck do Brasil Automação Ltda.

Rua Anjo Custódio Nr. 42, Jardim Anália Franco, CEP 03358-040 São Paulo

www.turck.com.br

China Turck (Tianjin) Sensor Co. Ltd.

18,4th Xinghuazhi Road, Xiqing Economic Development Area, 300381

Tianjir

www.turck.com.cn

Frankreich TURCK BANNER S.A.S.

11 rue de Courtalin Bat C, Magny Le Hongre, F-77703 MARNE LA VALLEE

Cedex 4

www.turckbanner.fr

Großbritannien TURCK BANNER LIMITED

Blenheim House, Hurricane Way, GB-SS11 8YT Wickford, Essex

www.turckbanner.co.uk

Indien TURCK India Automation Pvt. Ltd.

401-403 Aurum Avenue, Survey. No 109 /4, Near Cummins Complex,

Baner-Balewadi Link Rd., 411045 Pune - Maharashtra

www.turck.co.in

Italien TURCK BANNER S.R.L.

Via San Domenico 5, IT-20008 Bareggio (MI)

www.turckbanner.it

Japan TURCK Japan Corporation

ISM Akihabara 1F, 1-24-2, Taito, Taito-ku, 110-0016 Tokyo

www.turck.jp

Kanada Turck Canada Inc.

140 Duffield Drive, CDN-Markham, Ontario L6G 1B5

www.turck.ca

Korea Turck Korea Co, Ltd.

A605, 43, Iljik-ro, Gwangmyeong-si

14353 Gyeonggi-do www.turck.kr

Malaysia Turck Banner Malaysia Sdn Bhd

Unit A-23A-08, Tower A, Pinnacle Petaling Jaya, Jalan Utara C,

46200 Petaling Jaya Selangor www.turckbanner.my



Mexiko Turck Comercial, S. de RL de CV

Blvd. Campestre No. 100, Parque Industrial SERVER, C.P. 25350 Arteaga,

Coahuila

www.turck.com.mx

Niederlande Turck B. V.

Ruiterlaan 7, NL-8019 BN Zwolle

www.turck.nl

Österreich Turck GmbH

Graumanngasse 7/A5-1, A-1150 Wien

www.turck.at

Polen TURCK sp.z.o.o.

Wrocławska 115, PL-45-836 Opole

www.turck.pl

Rumänien Turck Automation Romania SRL

Str. Siriului nr. 6-8, Sector 1, RO-014354 Bucuresti

www.turck.ro

Schweden Turck AB

Fabriksstråket 9, 433 76 Jonsered

www.turck.se

Singapur TURCK BANNER Singapore Pte. Ltd.

25 International Business Park, #04-75/77 (West Wing) German Centre,

609916 Singapore www.turckbanner.sg

Südafrika Turck Banner (Pty) Ltd

Boeing Road East, Bedfordview, ZA-2007 Johannesburg

www.turckbanner.co.za

Tschechien TURCK s.r.o.

Na Brne 2065, CZ-500 06 Hradec Králové

www.turck.cz

Türkei Turck Otomasyon Ticaret Limited Sirketi

Inönü mah. Kayisdagi c., Yesil Konak Evleri No: 178, A Blok D:4,

34755 Kadiköy/ Istanbul www.turck.com.tr

**Ungarn** TURCK Hungary kft.

Árpád fejedelem útja 26-28., Óbuda Gate, 2. em., H-1023 Budapest

www.turck.hu

USA Turck Inc.

3000 Campus Drive, USA-MN 55441 Minneapolis

www.turck.us



### 16 Anhang: Konformität und Zulassungen

### 16.1 EU-Konformitätserklärung

Hiermit erklärt die Hans Turck GmbH & Co. KG, dass die Radar-Scanner der Baureihe MR... der Richtlinie 2014/53/EU und den Radio Equipment Regulations 2017 entsprechen. Der vollständige Text der EU/UK-Konformitätserklärung ist unter der folgenden Internetadresse verfügbar: www.turck.com

### 16.2 FCC digital device limitations

FCC ID: YQ7-MRXXX-Q80

This device complies with Part 15 of the FCC Rules standard(s). Operation is subject to the following two conditions:

- (1) this device may not cause harmful interference, and
- (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Radiofrequency radiation exposure Information:

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance of 20 cm between the radiator and your body.

This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.



Over 30 subsidiaries and 60 representations worldwide!

