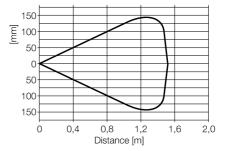

Capteur photoélectrique détecteur en mode barrière (récepteur) S12-2APRL-Q3

Туре	S12-2APRL-Q3
N° d'identification	3087417
Données optiques	
Fonction	Barrière unidirectionnelle
Mode de fonctionnement	récepteur
Longueur d'onde	880 nm
Portée	020 mm
Données électriques	
Tension de service U _B	1030 VDC
Consommation propre à vide I _o	≤ 15 mA
Fonction de sortie	N.O., commutation claire, PNP
Fréquence de commutation	≤ 55 Hz
Retard à la disponibilité	≤ 1 s
Retard à la disponibilité	≤ 1 ms
Temps de réponse typique	< 11 ms
Données mécaniques	
Format	Tube, S12-2
Dimensions	Ø 12 x 30.4 mm
Matériau de boîtier	Plastique, Plastique thermoplastique
Lentille	Lexan, polycarbonate
Raccordement électrique	Câble avec connecteur, M8 × 1, 0.15 m, PVC
Nombre de conducteurs	3
Section conducteur	0.34 mm ²
Température ambiante	-25+50 °C
Mode de protection	IP67
Caractéristiques particulières	encapsulé
Indication de la tension de service	LED, vert
Indication de l'état de commutation	LED, Jaune
Signalisation de défaut	LED, Vert, clignotant
Indication réserve de gain	LED
Essais/Certificats	

- a câble 2 m, 3 pôles
- tension d'alimentation 10-30 VDC
- commutation claire
- PNP


Schéma de raccordement

Principe de fonctionnement

Les détecteurs en mode barrière sont constitués d'un émetteur et d'un récepteur. Ils sont
montés de telle manière que la lumière de
l'émetteur arrive exactement au récepteur. Si
un objet interrompt ou affaiblit le rayon lumineux, une commutation sera réalisée. Partout
où des objets opaques doivent être détectés, des systèmes barrière sont les détecteurs
photoélectriques les plus fiables. Le grand
contraste entre l'état clair et sombre, ainsi que
les réserves de gain élevées typiques pour
ce mode de fonctionnement, permettent un
fonctionnement avec de grandes distances et
sous des conditions ambiantes difficiles.

Courbe de réserve de gain

